論文の概要: Hard Choices and Hard Limits for Artificial Intelligence
- arxiv url: http://arxiv.org/abs/2105.07852v1
- Date: Tue, 4 May 2021 22:56:04 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-18 17:21:38.392910
- Title: Hard Choices and Hard Limits for Artificial Intelligence
- Title(参考訳): 人工知能のハード・チョイスとハード・リミット
- Authors: Bryce Goodman
- Abstract要約: 本稿は、AIが解決できない、そして解決すべきでない決定と選択には、AIに厳しい制限があることを示している。
パリティの事実は、AIが解決できない、解決すべきでない意思決定や選択に、AIに厳しい限界があることを示しています。
- 参考スコア(独自算出の注目度): 0.5537911706288436
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Artificial intelligence (AI) is supposed to help us make better choices. Some
of these choices are small, like what route to take to work, or what music to
listen to. Others are big, like what treatment to administer for a disease or
how long to sentence someone for a crime. If AI can assist with these big
decisions, we might think it can also help with hard choices, cases where
alternatives are neither better, worse nor equal but on a par. The aim of this
paper, however, is to show that this view is mistaken: the fact of parity shows
that there are hard limits on AI in decision making and choices that AI cannot,
and should not, resolve.
- Abstract(参考訳): 人工知能(AI)はより良い選択をするのに役立ちます。
これらの選択肢のいくつかは小さく、例えばどのルートで仕事をするか、どの音楽を聴くかなどです。
他にも、病気に対する治療方法や、犯罪に対する有罪判決の期間など、大きなものがある。
もしAIがこれらの大きな決定を手伝うことができれば、選択肢がより良くも悪くも、同等であっても、難しい選択にも役立ちます。
しかし、本稿の目的は、この見解が誤りであることを示すことである: パリティの事実は、AIができない、そして解決すべきでない決定と選択において、AIに厳しい制限があることを示している。
関連論文リスト
- Un jeu a debattre pour sensibiliser a l'Intelligence Artificielle dans
le contexte de la pandemie de COVID-19 [0.0]
我々は,パンデミックを制御するためのAIソリューションの選択を目的とした市民討論という形で,真剣なゲームを提案する。
このゲームは高校生をターゲットにしており、科学フェアで初めて実験され、現在は無料で利用できる。
論文 参考訳(メタデータ) (2023-04-19T09:06:10Z) - The Role of Heuristics and Biases During Complex Choices with an AI
Teammate [0.0]
古典的な実験手法は、AIヘルパーによる複雑な選択を研究するには不十分である、と我々は主張する。
我々は、フレーミングとアンカー効果が、人々がAIヘルパーと一緒に働く方法に影響を与え、選択結果を予測することを示した。
論文 参考訳(メタデータ) (2023-01-14T20:06:43Z) - Seamful XAI: Operationalizing Seamful Design in Explainable AI [59.89011292395202]
AIシステムのミスは必然的であり、技術的制限と社会技術的ギャップの両方から生じる。
本稿では, 社会工学的・インフラ的ミスマッチを明らかにすることにより, シームレスな設計がAIの説明可能性を高めることを提案する。
43人のAI実践者と実際のエンドユーザでこのプロセスを探求します。
論文 参考訳(メタデータ) (2022-11-12T21:54:05Z) - On Avoiding Power-Seeking by Artificial Intelligence [93.9264437334683]
私たちは、非常にインテリジェントなAIエージェントの振る舞いと人間の関心を協調する方法を知りません。
私は、世界に限られた影響を与え、自律的に力を求めないスマートAIエージェントを構築できるかどうか調査する。
論文 参考訳(メタデータ) (2022-06-23T16:56:21Z) - A User-Centred Framework for Explainable Artificial Intelligence in
Human-Robot Interaction [70.11080854486953]
本稿では,XAIのソーシャル・インタラクティブな側面に着目したユーザ中心型フレームワークを提案する。
このフレームワークは、エキスパートでないユーザのために考えられた対話型XAIソリューションのための構造を提供することを目的としている。
論文 参考訳(メタデータ) (2021-09-27T09:56:23Z) - Trustworthy AI: A Computational Perspective [54.80482955088197]
我々は,信頼に値するAIを実現する上で最も重要な6つの要素,(i)安全とロバスト性,(ii)非差別と公正,(iii)説明可能性,(iv)プライバシー,(v)説明可能性と監査性,(vi)環境ウェルビーイングに焦点をあてる。
各次元について、分類学に基づく最近の関連技術について概観し、実世界のシステムにおけるそれらの応用を概説する。
論文 参考訳(メタデータ) (2021-07-12T14:21:46Z) - The Threat of Offensive AI to Organizations [52.011307264694665]
この調査は、組織に対する攻撃的なAIの脅威を調査する。
まず、AIが敵の方法、戦略、目標、および全体的な攻撃モデルをどのように変えるかについて議論する。
そして、文献レビューを通じて、敵が攻撃を強化するために使用できる33の攻撃的AI能力を特定します。
論文 参考訳(メタデータ) (2021-06-30T01:03:28Z) - "Weak AI" is Likely to Never Become "Strong AI", So What is its Greatest
Value for us? [4.497097230665825]
多くの研究者は、ここ数十年でAIがほとんど進歩していないと主張している。
著者は、AIに関する議論が存在する理由を説明します。(2)「弱いAI」と「強いAI」と呼ばれる2つのAI研究パラダイムを区別します。
論文 参考訳(メタデータ) (2021-03-29T02:57:48Z) - Towards AI Forensics: Did the Artificial Intelligence System Do It? [2.5991265608180396]
私たちは、デザインとグレーボックス分析によって潜在的に悪意のあるAIに焦点を当てています。
畳み込みニューラルネットワークによる評価は、悪意のあるAIを特定する上での課題とアイデアを示している。
論文 参考訳(メタデータ) (2020-05-27T20:28:19Z) - Is the Most Accurate AI the Best Teammate? Optimizing AI for Teamwork [54.309495231017344]
AIシステムは人間中心の方法でトレーニングされ、チームのパフォーマンスに直接最適化されるべきである、と私たちは主張する。
我々は,AIレコメンデーションを受け入れるか,あるいはタスク自体を解決するかを選択する,特定のタイプのAIチームを提案する。
実世界の高精度データセット上での線形モデルと非線形モデルによる実験は、AIが最も正確であることは、最高のチームパフォーマンスに繋がらないことを示している。
論文 参考訳(メタデータ) (2020-04-27T19:06:28Z) - Evidence-based explanation to promote fairness in AI systems [3.190891983147147]
人は意思決定をし、通常、自分の決定を他の人や何かに説明する必要があります。
意思決定をAIサポートで説明するためには、AIがその決定の一部となっているかを理解する必要がある。
我々は,「意思決定の物語を語る」ためのエビデンスに基づく説明設計アプローチを模索してきた。
論文 参考訳(メタデータ) (2020-03-03T14:22:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。