論文の概要: Joint Optimization of Hadamard Sensing and Reconstruction in Compressed
Sensing Fluorescence Microscopy
- arxiv url: http://arxiv.org/abs/2105.07961v1
- Date: Mon, 17 May 2021 15:42:28 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-18 19:25:39.651588
- Title: Joint Optimization of Hadamard Sensing and Reconstruction in Compressed
Sensing Fluorescence Microscopy
- Title(参考訳): 圧縮センシング蛍光顕微鏡におけるハダマールセンシングと再構成の合同最適化
- Authors: Alan Q. Wang, Aaron K. LaViolette, Leo Moon, Chris Xu, and Mert R.
Sabuncu
- Abstract要約: 本論文では, 全測定制約下でのセンシングと再構成を協調的に最適化する手法を提案する。
私たちは、共焦点、2光子、広視野顕微鏡画像の豊富なデータセットでモデルをトレーニングします。
- 参考スコア(独自算出の注目度): 9.210673747947165
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Compressed sensing fluorescence microscopy (CS-FM) proposes a scheme whereby
less measurements are collected during sensing and reconstruction is performed
to recover the image. Much work has gone into optimizing the sensing and
reconstruction portions separately. We propose a method of jointly optimizing
both sensing and reconstruction end-to-end under a total measurement
constraint, enabling learning of the optimal sensing scheme concurrently with
the parameters of a neural network-based reconstruction network. We train our
model on a rich dataset of confocal, two-photon, and wide-field microscopy
images comprising of a variety of biological samples. We show that our method
outperforms several baseline sensing schemes and a regularized regression
reconstruction algorithm.
- Abstract(参考訳): 圧縮蛍光顕微鏡 (CS-FM) は, センシング中に測定値が小さくなり, 画像の復元を行う方式を提案する。
センシングとリコンストラクションの部分を別々に最適化する作業が数多く行われている。
本稿では,全計測制約下でのセンシングとリコンストラクションの両エンドツーエンドを協調的に最適化し,ニューラルネットワークを用いたリコンストラクションネットワークのパラメータと並行して最適なセンシングスキームの学習を可能にする手法を提案する。
共焦点・2光子・広視野顕微鏡画像の多種多様な生体試料からなるリッチデータセットでモデルを訓練した。
本手法は,複数のベースラインセンシングスキームと正規化回帰再構成アルゴリズムに勝ることを示す。
関連論文リスト
- Optimization-Based Deep learning methods for Magnetic Resonance Imaging
Reconstruction and Synthesis [0.0]
この論文は、高度な非滑らかな変動モデル(Magnetic Resonance Image)MRI再構成、効率的な学習可能な画像再構成アルゴリズム、およびMRI再構成と合成のためのディープラーニング方法を提供することを目的としている。
第1部では、変動モデルのための近位勾配降下にインスパイアされたアーキテクチャを備えた、新規なディープニューラルネットワークを紹介している。
第2部は、離散時間最適フレームワークにおけるキャリブレーションフリー高速pMRI再構成問題を解くことにより、第1部における予備作業の実質的な拡張である。
第3部は、メタラーニングフレームワークにおいて、一般化可能な磁気共鳴イメージング(MRI)再構成法を開発することを目的としている。
論文 参考訳(メタデータ) (2023-03-02T18:59:44Z) - Spectral Bandwidth Recovery of Optical Coherence Tomography Images using
Deep Learning [0.6990493129893112]
取得速度を向上する技術開発は、しばしばスペクトル帯域幅が狭くなり、したがって軸方向分解能が低くなる。
従来,OCTのサブサンプルデータを再構成するために画像処理技術が用いられてきた。
本研究では,スペクトル領域におけるガウスウィンドウ化による軸方向スキャン(Aスキャン)分解能の低下をシミュレートし,画像特徴再構成のための学習的アプローチについて検討する。
論文 参考訳(メタデータ) (2023-01-02T02:18:32Z) - OADAT: Experimental and Synthetic Clinical Optoacoustic Data for
Standardized Image Processing [62.993663757843464]
オプトアコースティック(OA)イメージングは、ナノ秒レーザーパルスによる生体組織の励起と、光吸収による熱弾性膨張によって発生する超音波の検出に基づいている。
OAイメージングは、深部組織における豊富な光学コントラストと高分解能の強力な組み合わせを特徴としている。
臨床環境でのOAの幅広い応用を促進するために、異なるタイプの実験的なセットアップと関連する処理手法で生成される標準化データセットは存在しない。
論文 参考訳(メタデータ) (2022-06-17T08:11:26Z) - Learning Optimal K-space Acquisition and Reconstruction using
Physics-Informed Neural Networks [46.751292014516025]
深層ニューラルネットワークは、アンサンプされたk空間データの再構成に応用され、再構成性能が改善されている。
本研究は,k空間サンプリング軌道を正規微分方程式(ODE)問題と考えることによって学習する新しい枠組みを提案する。
実験は、異なるシーケンスで取得された様々な生き残りデータセット(例えば、脳と膝の画像)で実施された。
論文 参考訳(メタデータ) (2022-04-05T20:28:42Z) - Multi-modal Aggregation Network for Fast MR Imaging [85.25000133194762]
我々は,完全サンプル化された補助モダリティから補完表現を発見できる,MANetという新しいマルチモーダル・アグリゲーション・ネットワークを提案する。
我々のMANetでは,完全サンプリングされた補助的およびアンアンサンプされた目標モダリティの表現は,特定のネットワークを介して独立に学習される。
私たちのMANetは、$k$-spaceドメインの周波数信号を同時に回復できるハイブリッドドメイン学習フレームワークに従います。
論文 参考訳(メタデータ) (2021-10-15T13:16:59Z) - An Optimal Control Framework for Joint-channel Parallel MRI
Reconstruction without Coil Sensitivities [5.536263246814308]
離散時間最適制御フレームワークを組み込んだ新しいキャリブレーションフリー高速並列MRI (pMRI) 再構成法を開発した。
本稿では,画像空間とフーリエ空間における構造化マルチプレイヤー畳み込みネットワークを利用して,大きさ情報と位相情報を両立させることを提案する。
論文 参考訳(メタデータ) (2021-09-20T06:42:42Z) - Multi-Modal MRI Reconstruction with Spatial Alignment Network [51.74078260367654]
臨床実践では、複数のコントラストを持つMRIが1つの研究で取得されるのが普通である。
近年の研究では、異なるコントラストやモダリティの冗長性を考慮すると、k空間にアンダーサンプリングされたMRIの目標モダリティは、完全にサンプリングされたシーケンスの助けを借りてよりよく再構成できることが示されている。
本稿では,空間アライメントネットワークと再構成を統合し,再構成対象のモダリティの質を向上させる。
論文 参考訳(メタデータ) (2021-08-12T08:46:35Z) - Adaptive Gradient Balancing for UndersampledMRI Reconstruction and
Image-to-Image Translation [60.663499381212425]
本研究では,新しい適応勾配バランス手法を併用したwasserstein生成逆ネットワークを用いて,画質の向上を図る。
MRIでは、他の技術よりも鮮明な画像を生成する高品質の再構築を維持しながら、アーティファクトを最小限に抑えます。
論文 参考訳(メタデータ) (2021-04-05T13:05:22Z) - Deep Parallel MRI Reconstruction Network Without Coil Sensitivities [4.559089047554929]
並列MRI(pMRI)における高速画像再構成のための頑健な近位勾配スキームをデータからトレーニングした正規化関数にマッピングすることにより,新しいディープニューラルネットワークアーキテクチャを提案する。
提案するネットワークは,不完全なpMRIデータからのマルチコイル画像と均一なコントラストとを適応的に組み合わせることを学び,非線形エンコーダに渡されて画像のスパース特徴を効率的に抽出する。
論文 参考訳(メタデータ) (2020-08-04T08:39:36Z) - Kullback-Leibler Divergence-Based Fuzzy $C$-Means Clustering
Incorporating Morphological Reconstruction and Wavelet Frames for Image
Segmentation [152.609322951917]
そこで我々は,厳密なウェーブレットフレーム変換と形態的再構成操作を組み込むことで,Kulback-Leibler (KL) 発散に基づくFuzzy C-Means (FCM) アルゴリズムを考案した。
提案アルゴリズムはよく機能し、他の比較アルゴリズムよりもセグメンテーション性能が優れている。
論文 参考訳(メタデータ) (2020-02-21T05:19:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。