Transfer Learning Enhanced Generative Adversarial Networks for
Multi-Channel MRI Reconstruction
- URL: http://arxiv.org/abs/2105.08175v1
- Date: Mon, 17 May 2021 21:28:00 GMT
- Title: Transfer Learning Enhanced Generative Adversarial Networks for
Multi-Channel MRI Reconstruction
- Authors: Jun Lv, Guangyuan Li, Xiangrong Tong, Weibo Chen, Jiahao Huang,
Chengyan Wang, Guang Yang
- Abstract summary: Deep learning based generative adversarial networks (GAN) can effectively perform image reconstruction with under-sampled MR data.
It is difficult to obtain tens of thousands of raw patient data to train the model since saving k-space data is not in the routine clinical flow.
In this study, three novel applications were explored based on parallel imaging combined with the GAN model (PI-GAN) and transfer learning.
- Score: 3.5765797841178597
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep learning based generative adversarial networks (GAN) can effectively
perform image reconstruction with under-sampled MR data. In general, a large
number of training samples are required to improve the reconstruction
performance of a certain model. However, in real clinical applications, it is
difficult to obtain tens of thousands of raw patient data to train the model
since saving k-space data is not in the routine clinical flow. Therefore,
enhancing the generalizability of a network based on small samples is urgently
needed. In this study, three novel applications were explored based on parallel
imaging combined with the GAN model (PI-GAN) and transfer learning. The model
was pre-trained with public Calgary brain images and then fine-tuned for use in
(1) patients with tumors in our center; (2) different anatomies, including knee
and liver; (3) different k-space sampling masks with acceleration factors (AFs)
of 2 and 6. As for the brain tumor dataset, the transfer learning results could
remove the artifacts found in PI-GAN and yield smoother brain edges. The
transfer learning results for the knee and liver were superior to those of the
PI-GAN model trained with its own dataset using a smaller number of training
cases. However, the learning procedure converged more slowly in the knee
datasets compared to the learning in the brain tumor datasets. The
reconstruction performance was improved by transfer learning both in the models
with AFs of 2 and 6. Of these two models, the one with AF=2 showed better
results. The results also showed that transfer learning with the pre-trained
model could solve the problem of inconsistency between the training and test
datasets and facilitate generalization to unseen data.
Related papers
- Residual Vision Transformer (ResViT) Based Self-Supervised Learning Model for Brain Tumor Classification [0.08192907805418585]
Self-supervised learning models provide data-efficient and remarkable solutions to limited dataset problems.
This paper introduces a generative SSL model for brain tumor classification in two stages.
The proposed model attains the highest accuracy, achieving 90.56% on the BraTs dataset with T1 sequence, 98.53% on the Figshare, and 98.47% on the Kaggle brain tumor datasets.
arXiv Detail & Related papers (2024-11-19T21:42:57Z) - Brain Tumor Classification on MRI in Light of Molecular Markers [61.77272414423481]
Co-deletion of the 1p/19q gene is associated with clinical outcomes in low-grade gliomas.
This study aims to utilize a specially MRI-based convolutional neural network for brain cancer detection.
arXiv Detail & Related papers (2024-09-29T07:04:26Z) - Self-supervised Brain Lesion Generation for Effective Data Augmentation of Medical Images [0.9626666671366836]
We propose a framework to efficiently generate new samples for training a brain lesion segmentation model.
We first train a lesion generator, based on an adversarial autoencoder, in a self-supervised manner.
Next, we utilize a novel image composition algorithm, Soft Poisson Blending, to seamlessly combine synthetic lesions and brain images.
arXiv Detail & Related papers (2024-06-21T01:53:12Z) - Self-Supervised Pretext Tasks for Alzheimer's Disease Classification using 3D Convolutional Neural Networks on Large-Scale Synthetic Neuroimaging Dataset [11.173478552040441]
Alzheimer's Disease (AD) induces both localised and widespread neural degenerative changes throughout the brain.
In this work, we evaluated several unsupervised methods to train a feature extractor for downstream AD vs. CN classification.
arXiv Detail & Related papers (2024-06-20T11:26:32Z) - Transfer learning from a sparsely annotated dataset of 3D medical images [4.477071833136902]
This study explores the use of transfer learning to improve the performance of deep convolutional neural networks for organ segmentation in medical imaging.
A base segmentation model was trained on a large and sparsely annotated dataset; its weights were used for transfer learning on four new down-stream segmentation tasks.
The results showed that transfer learning from the base model was beneficial when small datasets were available.
arXiv Detail & Related papers (2023-11-08T21:31:02Z) - The effect of data augmentation and 3D-CNN depth on Alzheimer's Disease
detection [51.697248252191265]
This work summarizes and strictly observes best practices regarding data handling, experimental design, and model evaluation.
We focus on Alzheimer's Disease (AD) detection, which serves as a paradigmatic example of challenging problem in healthcare.
Within this framework, we train predictive 15 models, considering three different data augmentation strategies and five distinct 3D CNN architectures.
arXiv Detail & Related papers (2023-09-13T10:40:41Z) - Classification of Brain Tumours in MR Images using Deep Spatiospatial
Models [0.0]
This paper uses twotemporal models, ResNet (2+1)D and ResNet Mixed Convolution, to classify different types of brain tumours.
It was observed that both these models performed superior to the pure 3D convolutional model, ResNet18.
arXiv Detail & Related papers (2021-05-28T19:27:51Z) - A Multi-Stage Attentive Transfer Learning Framework for Improving
COVID-19 Diagnosis [49.3704402041314]
We propose a multi-stage attentive transfer learning framework for improving COVID-19 diagnosis.
Our proposed framework consists of three stages to train accurate diagnosis models through learning knowledge from multiple source tasks and data of different domains.
Importantly, we propose a novel self-supervised learning method to learn multi-scale representations for lung CT images.
arXiv Detail & Related papers (2021-01-14T01:39:19Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
We focus on few-shot disease subtype prediction problem, identifying subgroups of similar patients.
We introduce meta learning techniques to develop a new model, which can extract the common experience or knowledge from interrelated clinical tasks.
Our new model is built upon a carefully designed meta-learner, called Prototypical Network, that is a simple yet effective meta learning machine for few-shot image classification.
arXiv Detail & Related papers (2020-09-02T02:50:30Z) - Ensemble Transfer Learning for the Prediction of Anti-Cancer Drug
Response [49.86828302591469]
In this paper, we apply transfer learning to the prediction of anti-cancer drug response.
We apply the classic transfer learning framework that trains a prediction model on the source dataset and refines it on the target dataset.
The ensemble transfer learning pipeline is implemented using LightGBM and two deep neural network (DNN) models with different architectures.
arXiv Detail & Related papers (2020-05-13T20:29:48Z) - Deep transfer learning for improving single-EEG arousal detection [63.52264764099532]
Two datasets do not contain exactly the same setup leading to degraded performance in single-EEG models.
We train a baseline model and replace the first two layers to prepare the architecture for single-channel electroencephalography data.
Using a fine-tuning strategy, our model yields similar performance to the baseline model and was significantly better than a comparable single-channel model.
arXiv Detail & Related papers (2020-04-10T16:51:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.