論文の概要: COVID-19 Detection in Computed Tomography Images with 2D and 3D
Approaches
- arxiv url: http://arxiv.org/abs/2105.08506v2
- Date: Thu, 20 May 2021 08:47:45 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-21 11:00:45.072485
- Title: COVID-19 Detection in Computed Tomography Images with 2D and 3D
Approaches
- Title(参考訳): 2次元および3次元アプローチによるct画像中のcovid-19検出
- Authors: Sara Atito Ali Ahmed and Mehmet Can Yavuz and Mehmet Umut Sen and
Fatih Gulsen and Onur Tutar and Bora Korkmazer and Cesur Samanci and Sabri
Sirolu and Rauf Hamid and Ali Ergun Eryurekli and Toghrul Mammadov and Berrin
Yanikoglu
- Abstract要約: 本稿では,スライスベース(2D)とボリュームベース(3D)を組み合わせた,新型コロナウイルス感染症検出のための深層学習アンサンブルを提案する。
提案されたアンサンブルはIST-CovNetと呼ばれ、IST-Cデータセットで90.80%の精度と0.95のAUCスコアを得る。
Istanbul University Cerrahpasa School of Medicineで運用されている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Detecting COVID-19 in computed tomography (CT) or radiography images has been
proposed as a supplement to the definitive RT-PCR test. We present a deep
learning ensemble for detecting COVID-19 infection, combining slice-based (2D)
and volume-based (3D) approaches. The 2D system detects the infection on each
CT slice independently, combining them to obtain the patient-level decision via
different methods (averaging and long-short term memory networks). The 3D
system takes the whole CT volume to arrive to the patient-level decision in one
step. A new high resolution chest CT scan dataset, called the IST-C dataset, is
also collected in this work. The proposed ensemble, called IST-CovNet, obtains
90.80% accuracy and 0.95 AUC score overall on the IST-C dataset in detecting
COVID-19 among normal controls and other types of lung pathologies; and 93.69%
accuracy and 0.99 AUC score on the publicly available MosMed dataset that
consists of COVID-19 scans and normal controls only. The system is deployed at
Istanbul University Cerrahpasa School of Medicine.
- Abstract(参考訳): RT-PCR検査のサプリメントとしてCT(Computed tomography)やラジオグラフィー画像中のCOVID-19の検出が提案されている。
本稿では,スライスベース(2D)とボリュームベース(3D)を組み合わせた,新型コロナウイルス感染症検出のための深層学習アンサンブルを提案する。
2Dシステムは各CTスライスへの感染を個別に検出し、それらを組み合わせて、異なる方法(長期記憶ネットワークの拡張)によって患者レベルの決定を得る。
3dシステムは、ctの全容を1ステップで患者レベルの判断に到達させる。
IST-Cデータセットと呼ばれる新しい高解像度胸部CTスキャンデータセットもこの研究で収集されている。
提案されたアンサンブルは、IST-CovNetと呼ばれ、通常のコントロールやその他の種類の肺病理の新型コロナウイルスを検出するIST-Cデータセットで90.80%の精度と0.95のAUCスコア、および、COVID-19スキャンと通常のコントロールのみからなる一般公開されたMosMedデータセットで93.69%の精度と0.99のAUCスコアを得る。
Istanbul University Cerrahpasa School of Medicineで運用されている。
関連論文リスト
- Enhancing COVID-19 Severity Analysis through Ensemble Methods [13.792760290422185]
本稿では、新型コロナウイルス患者の感染症領域を抽出するためのドメイン知識に基づくパイプラインを提案する。
感染の重症度は、3つの機械学習モデルのアンサンブルを使用して異なるカテゴリに分類される。
提案システムは,AI-Enabled Medical Image Analysis WorkshopとCOVID-19診断コンペティションの検証データセットを用いて評価した。
論文 参考訳(メタデータ) (2023-03-13T13:59:47Z) - COVIDx CT-3: A Large-scale, Multinational, Open-Source Benchmark Dataset
for Computer-aided COVID-19 Screening from Chest CT Images [82.74877848011798]
胸部CT画像から新型コロナウイルスの症例を検出するための大規模ベンチマークデータセットであるCOVIDx CT-3を紹介する。
COVIDx CT-3には、少なくとも17カ国で6,068人の患者から431,205個のCTスライスが含まれている。
我々は, COVIDx CT-3データセットのデータ多様性と潜在的なバイアスについて検討し, 地理的, 集団的不均衡について検討した。
論文 参考訳(メタデータ) (2022-06-07T06:35:48Z) - CNN Filter Learning from Drawn Markers for the Detection of Suggestive
Signs of COVID-19 in CT Images [58.720142291102135]
畳み込みニューラルネットワーク(CNN)のフィルタを推定するために,大規模な注釈付きデータセットやバックプロパゲーションを必要としない手法を提案する。
少数のCT画像に対して、ユーザは、代表的な正常領域と異常領域にマーカーを描画する。
本発明の方法は、カーネルがマークされたものに似た拡張領域に特有な一連の畳み込み層からなる特徴抽出器を生成する。
論文 参考訳(メタデータ) (2021-11-16T15:03:42Z) - COVID-19 identification from volumetric chest CT scans using a
progressively resized 3D-CNN incorporating segmentation, augmentation, and
class-rebalancing [4.446085353384894]
新型コロナウイルスは世界的なパンデミックの流行だ。
高い感度のコンピュータ支援スクリーニングツールは、疾患の診断と予後に不可欠である。
本稿では,3次元畳み込みニューラルネットワーク(CNN)に基づく分類手法を提案する。
論文 参考訳(メタデータ) (2021-02-11T18:16:18Z) - Automated Model Design and Benchmarking of 3D Deep Learning Models for
COVID-19 Detection with Chest CT Scans [72.04652116817238]
3D胸部CTスキャン分類のための3D DLモデルを自動的に検索するための差別化可能なニューラルネットワーク探索(DNAS)フレームワークを提案する。
また,我々のモデルのクラスアクティベーションマッピング(cam)技術を利用して,結果の解釈可能性を提供する。
論文 参考訳(メタデータ) (2021-01-14T03:45:01Z) - Screening COVID-19 Based on CT/CXR Images & Building a Publicly
Available CT-scan Dataset of COVID-19 [6.142272540492935]
本研究は、1000人以上からなる13k以上のCT画像で構成され、新型コロナウイルスに感染した500人の患者から8kの画像を撮影する大規模なCTスキャンデータセットを構築した。
提案するCTデータセットを用いて,COVID-19をスクリーニングする深層学習モデルを提案し,その結果を報告する。
最後に、トランスファーラーニング手法を用いてCXR画像からCOVID-19をスクリーニングするCTモデルを拡張した。
論文 参考訳(メタデータ) (2020-12-28T11:52:33Z) - M3Lung-Sys: A Deep Learning System for Multi-Class Lung Pneumonia
Screening from CT Imaging [85.00066186644466]
マルチタスク型マルチスライス深層学習システム(M3Lung-Sys)を提案する。
COVID-19とHealthy, H1N1, CAPとの鑑別に加えて, M3 Lung-Sysも関連病変の部位を特定できる。
論文 参考訳(メタデータ) (2020-10-07T06:22:24Z) - COVIDNet-CT: A Tailored Deep Convolutional Neural Network Design for
Detection of COVID-19 Cases from Chest CT Images [75.74756992992147]
我々は、胸部CT画像からCOVID-19の症例を検出するのに適した、深層畳み込みニューラルネットワークアーキテクチャであるCOVIDNet-CTを紹介した。
また,中国生体情報センターが収集したCT画像データから得られたベンチマークCT画像データセットであるCOVIDx-CTも紹介した。
論文 参考訳(メタデータ) (2020-09-08T15:49:55Z) - JCS: An Explainable COVID-19 Diagnosis System by Joint Classification
and Segmentation [95.57532063232198]
新型コロナウイルス感染症2019(COVID-19)は、200カ国以上でパンデミックの流行を引き起こしている。
感染を制御するためには、感染した人々を識別し、分離することが最も重要なステップである。
本稿では,新型コロナウイルスの胸部CT診断をリアルタイムかつ説明可能な,新しい関節分類システム(JCS)を開発した。
論文 参考訳(メタデータ) (2020-04-15T12:30:40Z) - COVID-CT-Dataset: A CT Scan Dataset about COVID-19 [33.60943657492132]
新型コロナウイルスの流行期には、CT(Computerd tomography)は新型コロナウイルス患者の診断に有用である。
プライバシー上の問題から、公開可能なCOVID-19 CTデータセットの入手は非常に困難である。
このデータセットには、216人の患者の349のCOVID-19 CTイメージと、463の非COVID-19 CTが含まれている。
論文 参考訳(メタデータ) (2020-03-30T23:27:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。