論文の概要: Reinforcement Learning With Sparse-Executing Actions via Sparsity Regularization
- arxiv url: http://arxiv.org/abs/2105.08666v4
- Date: Mon, 22 Jul 2024 03:34:57 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-24 06:25:22.894406
- Title: Reinforcement Learning With Sparse-Executing Actions via Sparsity Regularization
- Title(参考訳): 疎度正規化によるスパース実行行動による強化学習
- Authors: Jing-Cheng Pang, Tian Xu, Shengyi Jiang, Yu-Ren Liu, Yang Yu,
- Abstract要約: 強化学習(RL)は、具体的制御、自律運転、金融取引といった意思決定タスクにおいて、素晴らしいパフォーマンスを示している。
多くの意思決定タスクでは、エージェントは限られた予算の下でアクションを実行するという問題に遭遇する。
本稿では,行動空間における特定の行動が限られた時間しか実行できないスパース行動マルコフ決定プロセス(SA-MDP)としてこの問題を定式化する。
本稿では,ポリシー最適化アルゴリズムであるAction Sparsity Regularization (ASRE)を提案する。
- 参考スコア(独自算出の注目度): 15.945378631406024
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Reinforcement learning (RL) has demonstrated impressive performance in decision-making tasks like embodied control, autonomous driving and financial trading. In many decision-making tasks, the agents often encounter the problem of executing actions under limited budgets. However, classic RL methods typically overlook the challenges posed by such sparse-executing actions. They operate under the assumption that all actions can be taken for a unlimited number of times, both in the formulation of the problem and in the development of effective algorithms. To tackle the issue of limited action execution in RL, this paper first formalizes the problem as a Sparse Action Markov Decision Process (SA-MDP), in which specific actions in the action space can only be executed for a limited time. Then, we propose a policy optimization algorithm, Action Sparsity REgularization (ASRE), which adaptively handles each action with a distinct preference. ASRE operates through two steps: First, ASRE evaluates action sparsity by constrained action sampling. Following this, ASRE incorporates the sparsity evaluation into policy learning by way of an action distribution regularization. We provide theoretical identification that validates the convergence of ASRE to a regularized optimal value function. Experiments on tasks with known sparse-executing actions, where classical RL algorithms struggle to train policy efficiently, ASRE effectively constrains the action sampling and outperforms baselines. Moreover, we present that ASRE can generally improve the performance in Atari games, demonstrating its broad applicability.
- Abstract(参考訳): 強化学習(RL)は、具体的制御、自律運転、金融取引といった意思決定タスクにおいて、素晴らしいパフォーマンスを示している。
多くの意思決定タスクでは、エージェントは限られた予算の下でアクションを実行するという問題に遭遇する。
しかし、古典的なRLメソッドは通常、そのような疎実行アクションによって引き起こされる課題を見落としている。
それらは、問題の定式化と効率的なアルゴリズムの開発の両方において、全てのアクションを無制限に行うことができるという仮定の下で機能する。
RLにおける限られた動作実行の問題に対処するため,本論文はまず,動作空間内の特定の動作を限られた時間だけしか実行できないスパース動作マルコフ決定プロセス(SA-MDP)として問題を定式化する。
そこで本研究では,各アクションを個別に順応的に処理するポリシー最適化アルゴリズムであるAction Sparsity Regularization (ASRE)を提案する。
まず、ASREは制約されたアクションサンプリングによってアクションのスパーシリティを評価する。
これに続いて、ASREは、行動分布正規化によるポリシー学習に疎性評価を組み込む。
我々は、ASREの正規化最適値関数への収束を検証する理論的同定を提供する。
古典的なRLアルゴリズムがポリシーを効率的に訓練するのに苦労するスパース実行アクションによるタスクの実験では、ASREはアクションサンプリングを効果的に制限し、ベースラインを上回ります。
さらに,ASREは一般にアタリゲームの性能を向上し,その適用性を示している。
関連論文リスト
- CoPS: Empowering LLM Agents with Provable Cross-Task Experience Sharing [70.25689961697523]
クロスタスク体験の共有と選択によるシーケンシャル推論を強化する一般化可能なアルゴリズムを提案する。
我々の研究は、既存のシーケンシャルな推論パラダイムのギャップを埋め、タスク間体験の活用の有効性を検証する。
論文 参考訳(メタデータ) (2024-10-22T03:59:53Z) - Active Fine-Tuning of Generalist Policies [54.65568433408307]
AMF(Active Multi-task Fine-tuning)を提案する。
我々は,AMFの性能保証を規則性仮定で導き,複雑・高次元環境における実験的有効性を示す。
論文 参考訳(メタデータ) (2024-10-07T13:26:36Z) - Excluding the Irrelevant: Focusing Reinforcement Learning through Continuous Action Masking [7.590209768166108]
本稿では,アクション空間を関連するアクションの状態依存集合にマッピングする3つの連続的なアクションマスキング手法を提案する。
本手法は,RLエージェントの予測可能性を高め,安全クリティカルなアプリケーションでの使用を可能にする。
論文 参考訳(メタデータ) (2024-06-06T02:55:16Z) - Growing Q-Networks: Solving Continuous Control Tasks with Adaptive Control Resolution [51.83951489847344]
ロボット工学の応用において、スムーズな制御信号はシステム摩耗とエネルギー効率を減らすために一般的に好まれる。
本研究では,離散的な動作空間を粗い状態から細かい制御分解能まで拡大することにより,この性能ギャップを埋めることを目的とする。
我々の研究は、値分解とアダプティブ・コントロール・リゾリューションが組み合わさることで、単純な批判のみのアルゴリズムが得られ、連続制御タスクにおいて驚くほど高い性能が得られることを示唆している。
論文 参考訳(メタデータ) (2024-04-05T17:58:37Z) - ACE : Off-Policy Actor-Critic with Causality-Aware Entropy Regularization [52.5587113539404]
因果関係を考慮したエントロピー(entropy)という用語を導入し,効率的な探索を行うための潜在的影響の高いアクションを効果的に識別し,優先順位付けする。
提案アルゴリズムであるACE:Off-policy Actor-critic with Causality-aware Entropy regularizationは,29種類の連続制御タスクに対して,大幅な性能上の優位性を示す。
論文 参考訳(メタデータ) (2024-02-22T13:22:06Z) - Generative Modelling of Stochastic Actions with Arbitrary Constraints in
Reinforcement Learning [25.342811509665097]
強化学習(RL)における多くの問題は、大きな離散多次元かつ非順序の作用空間を持つ最適ポリシーを求める。
この設定の課題は、下層の作用空間が分類的(離散的かつ非順序的)で大きいことである。
本研究では,(状態)条件正規化フローを適用して,ポリシーをコンパクトに表現することで,これらの課題に対処する。
論文 参考訳(メタデータ) (2023-11-26T15:57:20Z) - Action Pick-up in Dynamic Action Space Reinforcement Learning [6.15205100319133]
我々は,新しいアクションセットからパフォーマンスを高める可能性が最も高い価値あるアクションを自律的に選択するための,インテリジェントなアクションピックアップ(AP)アルゴリズムを提案する。
本稿では,まず,事前の最適政策が有用な知識と経験を提供することで,行動ピックアップにおいて重要な役割を担っていることを理論的に分析し,発見する。
次に、周波数に基づくグローバルメソッドと、事前の最適ポリシーに基づく状態クラスタリングに基づくローカルメソッドの2つの異なるAPメソッドを設計する。
論文 参考訳(メタデータ) (2023-04-03T10:55:16Z) - Addressing Action Oscillations through Learning Policy Inertia [26.171039226334504]
Policy Inertia Controller (PIC) は、既製のDRLアルゴリズムの汎用的なプラグインフレームワークとして機能する。
PIC強化政策の一般的なトレーニングアルゴリズムとしてNested Policy Iterationを提案する。
DRLアルゴリズム、すなわちNested Soft Actor-Criticを導出する。
論文 参考訳(メタデータ) (2021-03-03T09:59:43Z) - Zeroth-Order Supervised Policy Improvement [94.0748002906652]
政策勾配(PG)アルゴリズムは強化学習(RL)に広く用いられている。
ゼロ次監視政策改善(ZOSPI)を提案する。
ZOSPIは、PGメソッドの局所的な利用を保ちながら、推定値関数を全世界で$Q$で活用する。
論文 参考訳(メタデータ) (2020-06-11T16:49:23Z) - Discrete Action On-Policy Learning with Action-Value Critic [72.20609919995086]
離散的な行動空間における強化学習(RL)は、実世界の応用では至るところで行われているが、その複雑さは行動空間次元とともに指数関数的に増大する。
我々は,行動値関数を推定し,相関行動に適用し,これらの評価値を組み合わせて勾配推定の分散を制御する。
これらの取り組みにより、分散制御技術に頼って、関連するRLアルゴリズムを実証的に上回る、新たな離散的なRLアルゴリズムが実現される。
論文 参考訳(メタデータ) (2020-02-10T04:23:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。