論文の概要: Excluding the Irrelevant: Focusing Reinforcement Learning through Continuous Action Masking
- arxiv url: http://arxiv.org/abs/2406.03704v2
- Date: Tue, 05 Nov 2024 02:06:59 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-06 14:55:05.826910
- Title: Excluding the Irrelevant: Focusing Reinforcement Learning through Continuous Action Masking
- Title(参考訳): 重要でないものを除く:継続的アクション・マスキングによる強化学習に着目して
- Authors: Roland Stolz, Hanna Krasowski, Jakob Thumm, Michael Eichelbeck, Philipp Gassert, Matthias Althoff,
- Abstract要約: 本稿では,アクション空間を関連するアクションの状態依存集合にマッピングする3つの連続的なアクションマスキング手法を提案する。
本手法は,RLエージェントの予測可能性を高め,安全クリティカルなアプリケーションでの使用を可能にする。
- 参考スコア(独自算出の注目度): 7.590209768166108
- License:
- Abstract: Continuous action spaces in reinforcement learning (RL) are commonly defined as multidimensional intervals. While intervals usually reflect the action boundaries for tasks well, they can be challenging for learning because the typically large global action space leads to frequent exploration of irrelevant actions. Yet, little task knowledge can be sufficient to identify significantly smaller state-specific sets of relevant actions. Focusing learning on these relevant actions can significantly improve training efficiency and effectiveness. In this paper, we propose to focus learning on the set of relevant actions and introduce three continuous action masking methods for exactly mapping the action space to the state-dependent set of relevant actions. Thus, our methods ensure that only relevant actions are executed, enhancing the predictability of the RL agent and enabling its use in safety-critical applications. We further derive the implications of the proposed methods on the policy gradient. Using proximal policy optimization (PPO), we evaluate our methods on four control tasks, where the relevant action set is computed based on the system dynamics and a relevant state set. Our experiments show that the three action masking methods achieve higher final rewards and converge faster than the baseline without action masking.
- Abstract(参考訳): 強化学習(RL)における連続的な行動空間は、多次元間隔として一般的に定義される。
インターバルは通常、タスクのアクション境界をよく反映するが、一般的には大きなグローバルなアクション空間は、無関係なアクションを頻繁に探索するので、学習には困難である。
しかし、関連するアクションのより小さな状態固有の集合を特定するのに十分なタスク知識はほとんどない。
これらの関連する行動について学ぶことは、トレーニングの効率と効果を著しく改善する。
本稿では,関連するアクションの集合に焦点をあて,関連するアクションの集合にアクション空間を正確にマッピングする3つの連続的なアクションマスキング手法を提案する。
そこで本手法は,RLエージェントの予測可能性を高め,安全クリティカルなアプリケーションでの使用を可能にする。
さらに,提案手法が政策勾配に与える影響について考察する。
近似ポリシー最適化 (PPO) を用いて, 本手法を4つの制御タスク上で評価し, そこでは, システムダイナミクスと関連する状態セットに基づいて, 関連するアクションセットを計算する。
実験の結果,3つの行動マスキング法は,行動マスキングを伴わないベースラインよりも高い最終報酬を達成し,より高速に収束することがわかった。
関連論文リスト
- Active Fine-Tuning of Generalist Policies [54.65568433408307]
AMF(Active Multi-task Fine-tuning)を提案する。
我々は,AMFの性能保証を規則性仮定で導き,複雑・高次元環境における実験的有効性を示す。
論文 参考訳(メタデータ) (2024-10-07T13:26:36Z) - PRISE: LLM-Style Sequence Compression for Learning Temporal Action Abstractions in Control [55.81022882408587]
時間的行動抽象化は、信念状態表現とともに、シーケンシャルな意思決定のための強力な知識共有メカニズムである。
本稿では,時間的動作の抽象化をシーケンス圧縮問題として扱う新しい視点を提案する。
本稿では,連続的なアクション量子化とバイトペア符号化を組み合わせて,強力なアクション抽象化を学習するアプローチを提案する。
論文 参考訳(メタデータ) (2024-02-16T04:55:09Z) - Action Pick-up in Dynamic Action Space Reinforcement Learning [6.15205100319133]
我々は,新しいアクションセットからパフォーマンスを高める可能性が最も高い価値あるアクションを自律的に選択するための,インテリジェントなアクションピックアップ(AP)アルゴリズムを提案する。
本稿では,まず,事前の最適政策が有用な知識と経験を提供することで,行動ピックアップにおいて重要な役割を担っていることを理論的に分析し,発見する。
次に、周波数に基づくグローバルメソッドと、事前の最適ポリシーに基づく状態クラスタリングに基づくローカルメソッドの2つの異なるAPメソッドを設計する。
論文 参考訳(メタデータ) (2023-04-03T10:55:16Z) - Inapplicable Actions Learning for Knowledge Transfer in Reinforcement
Learning [3.194414753332705]
学習不能な動作はRLアルゴリズムのサンプル効率を大幅に向上させることを示す。
得られた知識の伝達性のおかげで、学習プロセスをより効率的にするために、他のタスクやドメインで再利用することができる。
論文 参考訳(メタデータ) (2022-11-28T17:45:39Z) - TempoRL: Temporal Priors for Exploration in Off-Policy Reinforcement
Learning [33.512849582347734]
より多様なタスクで共有されるオフラインデータから機能を学ぶことを提案する。
実演軌跡における時間的一貫性を直接モデル化する状態非依存の時間的先行性を導入する。
また、非政治強化学習における行動優先の新たな統合手法についても紹介する。
論文 参考訳(メタデータ) (2022-05-26T17:49:12Z) - Learning Routines for Effective Off-Policy Reinforcement Learning [0.0]
このような制約を効果的に緩和する強化学習のための新しい枠組みを提案する。
我々のフレームワーク内では、エージェントは日常的な空間上で効果的な行動を学ぶ。
その結果,各エピソードごとの環境との相互作用を少なくしながら,関連するパフォーマンス改善が得られることがわかった。
論文 参考訳(メタデータ) (2021-06-05T18:41:57Z) - Reinforcement Learning With Sparse-Executing Actions via Sparsity Regularization [15.945378631406024]
強化学習(RL)は、具体的制御、自律運転、金融取引といった意思決定タスクにおいて、素晴らしいパフォーマンスを示している。
多くの意思決定タスクでは、エージェントは限られた予算の下でアクションを実行するという問題に遭遇する。
本稿では,行動空間における特定の行動が限られた時間しか実行できないスパース行動マルコフ決定プロセス(SA-MDP)としてこの問題を定式化する。
本稿では,ポリシー最適化アルゴリズムであるAction Sparsity Regularization (ASRE)を提案する。
論文 参考訳(メタデータ) (2021-05-18T16:50:42Z) - Weakly Supervised Temporal Action Localization Through Learning Explicit
Subspaces for Action and Context [151.23835595907596]
ビデオレベルの監視のみの下で、アクションインスタンスの時間的開始と終了をローカライズする方法を学ぶ。
アクションとコンテキストそれぞれについて,2つの機能サブスペースを学習するフレームワークを提案する。
提案手法は3つのベンチマークで最先端のWS-TAL法より優れている。
論文 参考訳(メタデータ) (2021-03-30T08:26:53Z) - Learning Salient Boundary Feature for Anchor-free Temporal Action
Localization [81.55295042558409]
時間的行動のローカライゼーションはビデオ理解において重要な課題である。
純粋にアンカーフリーな時間的定位法を初めて提案する。
このモデルには,(i)エンドツーエンドのトレーニング可能な基本予測器,(ii)サリエンシベースのリファインメントモジュール,(iii)いくつかの一貫性制約が含まれている。
論文 参考訳(メタデータ) (2021-03-24T12:28:32Z) - Intra- and Inter-Action Understanding via Temporal Action Parsing [118.32912239230272]
本研究では,スポーツビデオにサブアクションの手動アノテーションを付加した新しいデータセットを構築し,その上に時間的行動解析を行う。
スポーツ活動は通常、複数のサブアクションから構成されており、このような時間構造に対する意識は、行動認識に有益であることを示す。
また,時間的解析手法を多数検討し,そのラベルを知らずにトレーニングデータからサブアクションをマイニングできる改良手法を考案した。
論文 参考訳(メタデータ) (2020-05-20T17:45:18Z) - Discrete Action On-Policy Learning with Action-Value Critic [72.20609919995086]
離散的な行動空間における強化学習(RL)は、実世界の応用では至るところで行われているが、その複雑さは行動空間次元とともに指数関数的に増大する。
我々は,行動値関数を推定し,相関行動に適用し,これらの評価値を組み合わせて勾配推定の分散を制御する。
これらの取り組みにより、分散制御技術に頼って、関連するRLアルゴリズムを実証的に上回る、新たな離散的なRLアルゴリズムが実現される。
論文 参考訳(メタデータ) (2020-02-10T04:23:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。