Improve Adversarial Robustness via Weight Penalization on Classification
Layer
- URL: http://arxiv.org/abs/2010.03844v1
- Date: Thu, 8 Oct 2020 08:57:57 GMT
- Title: Improve Adversarial Robustness via Weight Penalization on Classification
Layer
- Authors: Cong Xu, Dan Li and Min Yang
- Abstract summary: Deep neural networks are vulnerable to adversarial attacks.
Recent studies show that well-designed classification parts can lead to better robustness.
We develop a novel light-weight-penalized defensive method.
- Score: 20.84248493946059
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: It is well-known that deep neural networks are vulnerable to adversarial
attacks. Recent studies show that well-designed classification parts can lead
to better robustness. However, there is still much space for improvement along
this line. In this paper, we first prove that, from a geometric point of view,
the robustness of a neural network is equivalent to some angular margin
condition of the classifier weights. We then explain why ReLU type function is
not a good choice for activation under this framework. These findings reveal
the limitations of the existing approaches and lead us to develop a novel
light-weight-penalized defensive method, which is simple and has a good
scalability. Empirical results on multiple benchmark datasets demonstrate that
our method can effectively improve the robustness of the network without
requiring too much additional computation, while maintaining a high
classification precision for clean data.
Related papers
- Doubly Robust Instance-Reweighted Adversarial Training [107.40683655362285]
We propose a novel doubly-robust instance reweighted adversarial framework.
Our importance weights are obtained by optimizing the KL-divergence regularized loss function.
Our proposed approach outperforms related state-of-the-art baseline methods in terms of average robust performance.
arXiv Detail & Related papers (2023-08-01T06:16:18Z) - The Cascaded Forward Algorithm for Neural Network Training [61.06444586991505]
We propose a new learning framework for neural networks, namely Cascaded Forward (CaFo) algorithm, which does not rely on BP optimization as that in FF.
Unlike FF, our framework directly outputs label distributions at each cascaded block, which does not require generation of additional negative samples.
In our framework each block can be trained independently, so it can be easily deployed into parallel acceleration systems.
arXiv Detail & Related papers (2023-03-17T02:01:11Z) - A Systematic Evaluation of Node Embedding Robustness [77.29026280120277]
We assess the empirical robustness of node embedding models to random and adversarial poisoning attacks.
We compare edge addition, deletion and rewiring strategies computed using network properties as well as node labels.
We found that node classification suffers from higher performance degradation as opposed to network reconstruction.
arXiv Detail & Related papers (2022-09-16T17:20:23Z) - Can pruning improve certified robustness of neural networks? [106.03070538582222]
We show that neural network pruning can improve empirical robustness of deep neural networks (NNs)
Our experiments show that by appropriately pruning an NN, its certified accuracy can be boosted up to 8.2% under standard training.
We additionally observe the existence of certified lottery tickets that can match both standard and certified robust accuracies of the original dense models.
arXiv Detail & Related papers (2022-06-15T05:48:51Z) - Efficient and Robust Classification for Sparse Attacks [34.48667992227529]
We consider perturbations bounded by the $ell$--norm, which have been shown as effective attacks in the domains of image-recognition, natural language processing, and malware-detection.
We propose a novel defense method that consists of "truncation" and "adrial training"
Motivated by the insights we obtain, we extend these components to neural network classifiers.
arXiv Detail & Related papers (2022-01-23T21:18:17Z) - Robustness against Adversarial Attacks in Neural Networks using
Incremental Dissipativity [3.8673567847548114]
Adversarial examples can easily degrade the classification performance in neural networks.
This work proposes an incremental dissipativity-based robustness certificate for neural networks.
arXiv Detail & Related papers (2021-11-25T04:42:57Z) - Non-Gradient Manifold Neural Network [79.44066256794187]
Deep neural network (DNN) generally takes thousands of iterations to optimize via gradient descent.
We propose a novel manifold neural network based on non-gradient optimization.
arXiv Detail & Related papers (2021-06-15T06:39:13Z) - An Orthogonal Classifier for Improving the Adversarial Robustness of
Neural Networks [21.13588742648554]
Recent efforts have shown that imposing certain modifications on classification layer can improve the robustness of the neural networks.
We explicitly construct a dense orthogonal weight matrix whose entries have the same magnitude, leading to a novel robust classifier.
Our method is efficient and competitive to many state-of-the-art defensive approaches.
arXiv Detail & Related papers (2021-05-19T13:12:14Z) - A general framework for defining and optimizing robustness [74.67016173858497]
We propose a rigorous and flexible framework for defining different types of robustness properties for classifiers.
Our concept is based on postulates that robustness of a classifier should be considered as a property that is independent of accuracy.
We develop a very general robustness framework that is applicable to any type of classification model.
arXiv Detail & Related papers (2020-06-19T13:24:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.