論文の概要: Single-Layer Vision Transformers for More Accurate Early Exits with Less
Overhead
- arxiv url: http://arxiv.org/abs/2105.09121v1
- Date: Wed, 19 May 2021 13:30:34 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-20 13:57:58.528777
- Title: Single-Layer Vision Transformers for More Accurate Early Exits with Less
Overhead
- Title(参考訳): オーバーヘッドの少ないより正確な早期出力用単層視覚変換器
- Authors: Arian Bakhtiarnia, Qi Zhang and Alexandros Iosifidis
- Abstract要約: 視覚変換器アーキテクチャに基づく早期退避のための新しいアーキテクチャを提案する。
本手法は分類問題と回帰問題の両方に有効であることを示す。
また,音声視覚データ解析において,早期出口に音声と視覚のモダリティを統合する新しい手法を提案する。
- 参考スコア(独自算出の注目度): 88.17413955380262
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deploying deep learning models in time-critical applications with limited
computational resources, for instance in edge computing systems and IoT
networks, is a challenging task that often relies on dynamic inference methods
such as early exiting. In this paper, we introduce a novel architecture for
early exiting based on the vision transformer architecture, as well as a
fine-tuning strategy that significantly increase the accuracy of early exit
branches compared to conventional approaches while introducing less overhead.
Through extensive experiments on image and audio classification as well as
audiovisual crowd counting, we show that our method works for both
classification and regression problems, and in both single- and multi-modal
settings. Additionally, we introduce a novel method for integrating audio and
visual modalities within early exits in audiovisual data analysis, that can
lead to a more fine-grained dynamic inference.
- Abstract(参考訳): エッジコンピューティングシステムやiotネットワークなど、限られた計算リソースを持つ時間クリティカルなアプリケーションにディープラーニングモデルをデプロイすることは、早期のイグジットのような動的推論メソッドにしばしば依存する、困難なタスクである。
本稿では,視覚トランスフォーマーアーキテクチャに基づく早期退出のための新しいアーキテクチャを提案するとともに,従来のアプローチに比べて早期退出ブランチの精度を著しく向上させながら,オーバーヘッドを低減した微調整戦略を提案する。
画像と音声の分類と音響視覚的群集の計数に関する広範な実験を通じて,本手法は分類と回帰の両問題,および単一・複数モードの設定において有効であることを示す。
さらに、オーディオ視覚データ解析において、早期出口における音声と視覚のモダリティを統合する新しい手法を導入し、よりきめ細かな動的推論を実現する。
関連論文リスト
- Hierarchical and Decoupled BEV Perception Learning Framework for Autonomous Driving [52.808273563372126]
本稿では,基本認識モジュールとユーザフレンドリなグラフィカルインタフェースのライブラリの提供を目的とした,新しい階層的BEV知覚パラダイムを提案する。
我々は,大規模公開データセットと合理化開発プロセスを効果的に活用するために,Pretrain-Finetune戦略を実行している。
また、マルチモジュールラーニング(MML)アプローチを提案し、複数のモデルの相乗的かつ反復的な訓練により性能を向上させる。
論文 参考訳(メタデータ) (2024-07-17T11:17:20Z) - Tailored Design of Audio-Visual Speech Recognition Models using Branchformers [0.0]
本稿では,パラメータ効率の高い音声認識システムの設計のための新しいフレームワークを提案する。
より正確に言うと、提案するフレームワークは、まず、音声のみのシステムとビデオのみのシステムを推定し、次に、カスタマイズされたオーディオ視覚統合エンコーダを設計する。
その結果、我々のAVSRシステムがどのように最先端の認識率に到達できるかが反映された。
論文 参考訳(メタデータ) (2024-07-09T07:15:56Z) - Improved Baselines for Data-efficient Perceptual Augmentation of LLMs [66.05826802808177]
コンピュータビジョンでは、画像キャプションや視覚的質問応答などの視覚言語タスクに、大きな言語モデル(LLM)を用いることができる。
複数のタスクにまたがる異なる対面機構を実験的に評価する。
異なるタスク間で(ほぼ)最適な結果をもたらす新しいインターフェース機構を同定し、トレーニング時間を4倍短縮する。
論文 参考訳(メタデータ) (2024-03-20T10:57:17Z) - Training dynamic models using early exits for automatic speech
recognition on resource-constrained devices [15.879328412777008]
初期のアーキテクチャは、そのサイズとアーキテクチャを様々なレベルの計算リソースとASRパフォーマンス要求に適応できる動的モデルの開発を可能にする。
また,スクラッチからトレーニングした早期退避モデルは,エンコーダ層が少ない場合に性能を保ちつつ,単一退避モデルや事前学習モデルと比較してタスク精度が向上することを示した。
結果は、ASRモデルの早期アーキテクチャのトレーニングダイナミクスに関する洞察を与える。
論文 参考訳(メタデータ) (2023-09-18T07:45:16Z) - Improving Audio-Visual Segmentation with Bidirectional Generation [40.78395709407226]
音声・視覚的セグメンテーションのための双方向生成フレームワークを提案する。
この枠組みは、物体の視覚的特徴と関連する音との堅牢な相関関係を確立する。
また、時間力学を扱う暗黙の体積運動推定モジュールも導入する。
論文 参考訳(メタデータ) (2023-08-16T11:20:23Z) - Improving Audio-Visual Speech Recognition by Lip-Subword Correlation
Based Visual Pre-training and Cross-Modal Fusion Encoder [58.523884148942166]
本稿では,事前学習および微調整訓練の枠組みの下で,音声視覚音声認識(AVSR)を改善するための2つの新しい手法を提案する。
まず, マンダリンにおける口唇形状と音節レベルサブワード単位の相関について検討し, 口唇形状から良好なフレームレベル音節境界を確立する。
次に,音声誘導型クロスモーダルフュージョンエンコーダ(CMFE)ニューラルネットワークを提案する。
論文 参考訳(メタデータ) (2023-08-14T08:19:24Z) - mPLUG: Effective and Efficient Vision-Language Learning by Cross-modal
Skip-connections [104.14624185375897]
mPLUGは、クロスモーダルな理解と生成のための新しいビジョン言語基盤モデルである。
画像キャプション、画像テキスト検索、視覚的グラウンドリング、視覚的質問応答など、幅広い視覚言語下流タスクの最先端結果を達成する。
論文 参考訳(メタデータ) (2022-05-24T11:52:06Z) - Audio-Visual Scene Classification Using A Transfer Learning Based Joint
Optimization Strategy [26.975596225131824]
AVSCタスクの入力として音響特徴と生画像を直接利用する共同トレーニングフレームワークを提案する。
具体的には、事前学習した画像モデルの底層をビジュアルエンコーダとして検索し、トレーニング中にシーン分類器と1D-CNNベースの音響エンコーダを共同で最適化する。
論文 参考訳(メタデータ) (2022-04-25T03:37:02Z) - Spatio-Temporal Recurrent Networks for Event-Based Optical Flow
Estimation [47.984368369734995]
本稿では,イベントベース光フロー推定のためのニューラルネットアーキテクチャを提案する。
このネットワークは、Multi-Vehicle Stereo Event Cameraデータセット上で、セルフ教師付き学習でエンドツーエンドにトレーニングされている。
既存の最先端の手法を大きなマージンで上回る結果が得られた。
論文 参考訳(メタデータ) (2021-09-10T13:37:37Z) - Attention Bottlenecks for Multimodal Fusion [90.75885715478054]
機械知覚モデルは典型的にはモダリティに特化しており、単調なベンチマークのために最適化されている。
複数の層でのモジュラリティ融合に「融合」を用いる新しいトランスフォーマーアーキテクチャを導入する。
我々は、徹底的なアブレーション研究を行い、複数のオーディオ視覚分類ベンチマークで最先端の結果を得る。
論文 参考訳(メタデータ) (2021-06-30T22:44:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。