論文の概要: Hierarchical and Decoupled BEV Perception Learning Framework for Autonomous Driving
- arxiv url: http://arxiv.org/abs/2407.12491v2
- Date: Thu, 25 Jul 2024 21:55:44 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-29 15:38:30.208076
- Title: Hierarchical and Decoupled BEV Perception Learning Framework for Autonomous Driving
- Title(参考訳): 自律運転のための階層的・非結合型BEV知覚学習フレームワーク
- Authors: Yuqi Dai, Jian Sun, Shengbo Eben Li, Qing Xu, Jianqiang Wang, Lei He, Keqiang Li,
- Abstract要約: 本稿では,基本認識モジュールとユーザフレンドリなグラフィカルインタフェースのライブラリの提供を目的とした,新しい階層的BEV知覚パラダイムを提案する。
我々は,大規模公開データセットと合理化開発プロセスを効果的に活用するために,Pretrain-Finetune戦略を実行している。
また、マルチモジュールラーニング(MML)アプローチを提案し、複数のモデルの相乗的かつ反復的な訓練により性能を向上させる。
- 参考スコア(独自算出の注目度): 52.808273563372126
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Perception is essential for autonomous driving system. Recent approaches based on Bird's-eye-view (BEV) and deep learning have made significant progress. However, there exists challenging issues including lengthy development cycles, poor reusability, and complex sensor setups in perception algorithm development process. To tackle the above challenges, this paper proposes a novel hierarchical BEV perception paradigm, aiming to provide a library of fundamental perception modules and user-friendly graphical interface, enabling swift construction of customized models. We conduct the Pretrain-Finetune strategy to effectively utilize large scale public datasets and streamline development processes. Moreover, we present a Multi-Module Learning (MML) approach, enhancing performance through synergistic and iterative training of multiple models. Extensive experimental results on the Nuscenes dataset demonstrate that our approach renders significant improvement over the traditional training scheme.
- Abstract(参考訳): 認識は自律運転システムに不可欠である。
Bird's-eye-view (BEV) とディープラーニングに基づく最近のアプローチは大きな進歩を遂げた。
しかし、認識アルゴリズム開発プロセスにおいて、長い開発サイクル、再利用性の低さ、複雑なセンサー設定などの課題が存在する。
このような課題に対処するため,本研究では,基本認識モジュールとユーザフレンドリなグラフィカルインタフェースのライブラリを提供することを目的として,新しい階層的BEV認識パラダイムを提案する。
我々は,大規模公開データセットと合理化開発プロセスを効果的に活用するために,Pretrain-Finetune戦略を実行している。
さらに,マルチモジュール学習(MML)アプローチを提案し,複数のモデルの相乗的かつ反復的な学習を通じて性能を向上させる。
Nuscenesデータセットの大規模な実験結果から、我々のアプローチは従来のトレーニング手法よりも大幅に改善されていることが分かる。
関連論文リスト
- Exploring the design space of deep-learning-based weather forecasting systems [56.129148006412855]
本稿では,異なる設計選択がディープラーニングに基づく天気予報システムに与える影響を系統的に分析する。
UNet、完全畳み込みアーキテクチャ、トランスフォーマーベースモデルなどの固定グリッドアーキテクチャについて検討する。
固定グリッドモデルの強靭な性能とグリッド不変アーキテクチャの柔軟性を組み合わせたハイブリッドシステムを提案する。
論文 参考訳(メタデータ) (2024-10-09T22:25:50Z) - FSD-BEV: Foreground Self-Distillation for Multi-view 3D Object Detection [33.225938984092274]
本稿では,分散の相違を効果的に回避するFSD方式を提案する。
また2つのポイントクラウド拡張(PCI)戦略を設計し、ポイントクラウドの幅を補う。
マルチスケール・フォアグラウンド・エンハンスメント(MSFE)モジュールを開発し,マルチスケール・フォアグラウンドの特徴を抽出・融合する。
論文 参考訳(メタデータ) (2024-07-14T09:39:44Z) - An Empirical Study of Training State-of-the-Art LiDAR Segmentation Models [25.28234439927537]
MMDetection3D-lidarsegは、最先端LiDARセグメンテーションモデルの効率的なトレーニングと評価のための包括的なツールボックスである。
我々は、幅広いセグメンテーションモデルをサポートし、堅牢性と効率を高めるために高度なデータ拡張技術を統合する。
統一されたフレームワークを育むことで、MMDetection3D-lidarsegは開発とベンチマークを合理化し、研究とアプリケーションのための新しい標準を設定します。
論文 参考訳(メタデータ) (2024-05-23T17:59:57Z) - PILOT: A Pre-Trained Model-Based Continual Learning Toolbox [71.63186089279218]
本稿では,PILOTとして知られるモデルベース連続学習ツールボックスについて紹介する。
一方、PILOTはL2P、DualPrompt、CODA-Promptといった事前学習モデルに基づいて、最先端のクラスインクリメンタル学習アルゴリズムを実装している。
一方、PILOTは、事前学習されたモデルの文脈に典型的なクラス増分学習アルゴリズムを適合させ、それらの効果を評価する。
論文 参考訳(メタデータ) (2023-09-13T17:55:11Z) - Pre-training Contextualized World Models with In-the-wild Videos for
Reinforcement Learning [54.67880602409801]
本稿では,視覚制御タスクの学習を効率的に行うために,Wild 動画を多用した事前学習型世界モデルの課題について検討する。
本稿では、コンテキストと動的モデリングを明確に分離したContextualized World Models(ContextWM)を紹介する。
実験により,ContextWMを内蔵したWildビデオ事前学習は,モデルベース強化学習のサンプル効率を大幅に向上できることが示された。
論文 参考訳(メタデータ) (2023-05-29T14:29:12Z) - Predictive Experience Replay for Continual Visual Control and
Forecasting [62.06183102362871]
視覚力学モデリングのための新しい連続学習手法を提案し,その視覚制御と予測における有効性について検討する。
まず,タスク固有のダイナミクスをガウスの混合で学習する混合世界モデルを提案し,その上で,破滅的な忘れを克服するための新たなトレーニング戦略を提案する。
我々のモデルは,DeepMind Control と Meta-World のベンチマークにおいて,既存の連続的学習アルゴリズムと視覚的RLアルゴリズムの単純な組み合わせよりも優れている。
論文 参考訳(メタデータ) (2023-03-12T05:08:03Z) - Concept Discovery for Fast Adapatation [42.81705659613234]
データ特徴間の構造をメタラーニングすることで、より効果的な適応を実現する。
提案手法は,概念ベースモデル非依存メタラーニング(COMAML)を用いて,合成されたデータセットと実世界のデータセットの両方に対して,構造化データの一貫した改善を実現する。
論文 参考訳(メタデータ) (2023-01-19T02:33:58Z) - Single-Layer Vision Transformers for More Accurate Early Exits with Less
Overhead [88.17413955380262]
視覚変換器アーキテクチャに基づく早期退避のための新しいアーキテクチャを提案する。
本手法は分類問題と回帰問題の両方に有効であることを示す。
また,音声視覚データ解析において,早期出口に音声と視覚のモダリティを統合する新しい手法を提案する。
論文 参考訳(メタデータ) (2021-05-19T13:30:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。