Coherence in Cooperative Photon Emission from Indistinguishable Quantum
Emitters
- URL: http://arxiv.org/abs/2105.09399v2
- Date: Sat, 19 Mar 2022 20:37:39 GMT
- Title: Coherence in Cooperative Photon Emission from Indistinguishable Quantum
Emitters
- Authors: Zhe Xian Koong, Moritz Cygorek, Eleanor Scerri, Ted S. Santana, Suk-In
Park, Jin Dong Song, Erik M. Gauger, Brian D. Gerardot
- Abstract summary: We probe the role of coherence in cooperative emission arising from two distant but indistinguishable solid-state emitters because of path erasure.
Our experiments establish techniques to control and characterize cooperative behavior between matter qubits using the full quantum optics toolbox.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Photon-mediated interactions between atomic systems can arise via coupling to
a common electromagnetic mode or by quantum interference. Here, we probe the
role of coherence in cooperative emission arising from two distant but
indistinguishable solid-state emitters because of path erasure. The primary
signature of cooperative emission, the emergence of "bunching" at zero delay in
an intensity correlation experiment, is used to characterise the
indistinguishability of the emitters, their dephasing, and the degree of
correlation in the joint system that can be coherently controlled. In a stark
departure from a pair of uncorrelated emitters, in Hong-Ou-Mandel type
interference measurements we observe photon statistics from a pair of
indistinguishable emitters resembling that of a weak coherent state from an
attenuated laser. Our experiments establish techniques to control and
characterize cooperative behavior between matter qubits using the full quantum
optics toolbox, a key step toward realizing large-scale quantum photonic
networks.
Related papers
- Demonstration of Lossy Linear Transformations and Two-Photon Interference on a Photonic Chip [78.1768579844556]
We show that engineered loss, using an auxiliary waveguide, allows one to invert the spatial statistics from bunching to antibunching.
We study the photon statistics within the loss-emulating channel and observe photon coincidences, which may provide insights into the design of quantum photonic integrated chips.
arXiv Detail & Related papers (2024-04-09T06:45:46Z) - Direct Manipulation of quantum entanglement from the non-Hermitian
nature of light-matter interaction [7.106490464673198]
We report the demonstration of exceptional point (EP) in biphotons by measuring the light-atom interaction as a natural non-Hermitian system.
Such biphoton correlation is tuned within an unprecedented large range from Rabi oscillation to antibunching-exponential-decay.
Our results provide a unique method to realize the controllability of natural non-Hermitian processes without the assistance of artificial photonic structures.
arXiv Detail & Related papers (2023-11-30T03:52:11Z) - Violation of Bell inequality by photon scattering on a two-level emitter [4.810881229568956]
Entanglement, the non-local correlations present in quantum systems, is a curious feature of quantum mechanics and the fuel of quantum technology.
We show how a single two-level emitter deterministically coupled to light in a nanophotonic waveguide is used to realize genuine photonic quantum entanglement for excitation at the single photon level.
arXiv Detail & Related papers (2023-06-22T11:01:24Z) - Strong coupling, weak impact: Phonon coupling versus pure dephasing in
the photon statistics of cooperative emitters [0.0]
We show how access to weaker dephasing mechanisms can be obtained for optically active qubits by performing two-photon coincidence measurements.
We focus on the typically dominant deformation-potential coupling to longitudinal acoustic phonons.
Surprisingly, the impact of the strongly coupled phonon environment is weak and leads to long-lived coherences.
arXiv Detail & Related papers (2022-08-30T21:38:27Z) - Visualizing the breakdown of quantum multimodality in coherently driven
light-matter interaction [0.0]
We show that the saturation of a multiphoton transition is accompanied by a gradual collapse of quantum multimodality.
We also reveal two coexistent quantum beats in the intensity correlation function of the forwards scattered photons.
arXiv Detail & Related papers (2022-06-22T16:31:39Z) - Regimes of Cavity-QED under Incoherent Excitation: From Weak to Deep
Strong Coupling [0.0]
A two-level atom interacting with a quantized single-mode electromagnetic field is described by the quantum Rabi model (QRM)
Here, we study the photon flux emission rate of this system under the incoherent excitation of the two-level atom for any light-matter interaction strength.
arXiv Detail & Related papers (2021-12-16T14:36:54Z) - Quantum asymmetry and noisy multi-mode interferometry [55.41644538483948]
Quantum asymmetry is a physical resource which coincides with the amount of coherence between the eigenspaces of a generator.
We show that the asymmetry may emphincrease as a result of a emphdecrease of coherence inside a degenerate subspace.
arXiv Detail & Related papers (2021-07-23T07:30:57Z) - Two-photon resonance fluorescence of two interacting non-identical
quantum emitters [77.34726150561087]
We study a system of two interacting, non-indentical quantum emitters driven by a coherent field.
We show that the features imprinted by the two-photon dynamics into the spectrum of resonance fluorescence are particularly sensitive to changes in the distance between emitters.
This can be exploited for applications such as superresolution imaging of point-like sources.
arXiv Detail & Related papers (2021-06-04T16:13:01Z) - Observation-dependent suppression and enhancement of two-photon
coincidences by tailored losses [68.8204255655161]
Hong-Ou-Mandel (HOM) effect can lead to a perfect suppression of two-particle coincidences between the output ports of a balanced beam splitter.
In this work, we demonstrate experimentally that the two-particle coincidence statistics of two bosons can instead be seamlessly tuned to substantial enhancement.
Our findings reveal a new approach to harnessing non-Hermitian settings for the manipulation of multi-particle quantum states.
arXiv Detail & Related papers (2021-05-12T06:47:35Z) - Enhancing nonclassical bosonic correlations in a Quantum Walk network
through experimental control of disorder [50.591267188664666]
We experimentally realize a controllable inhomogenous Quantum Walk dynamics.
We observe two photon states which exhibit an enhancement in the quantum correlations between two modes of the network.
arXiv Detail & Related papers (2021-02-09T10:57:00Z) - Theory of waveguide-QED with moving emitters [68.8204255655161]
We study a system composed by a waveguide and a moving quantum emitter in the single excitation subspace.
We first characterize single-photon scattering off a single moving quantum emitter, showing both nonreciprocal transmission and recoil-induced reduction of the quantum emitter motional energy.
arXiv Detail & Related papers (2020-03-20T12:14:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.