論文の概要: AI-Decision Support System Interface Using Cancer Related Data for Lung
Cancer Prognosis
- arxiv url: http://arxiv.org/abs/2105.09471v1
- Date: Wed, 19 May 2021 10:22:37 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-22 01:40:37.329190
- Title: AI-Decision Support System Interface Using Cancer Related Data for Lung
Cancer Prognosis
- Title(参考訳): 肺癌予後関連データを用いたAI-Decision Support System Interface
- Authors: Asim Leblebici, Omer Gesoglu, Yasemin Basbinar
- Abstract要約: 2021年の初めまで、肺がんは世界で最も一般的ながんとして知られている。
この研究は、GDCデータポータル内の肺がんの臨床と遺伝子発現を用いて、予後を予測するための機械学習アルゴリズムと連携したWebインターフェースを作成することを目的としている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Until the beginning of 2021, lung cancer is known to be the most common
cancer in the world. The disease is common due to factors such as occupational
exposure, smoking and environmental pollution. The early diagnosis and
treatment of the disease is of great importance as well as the prevention of
the causes that cause the disease. The study was planned to create a web
interface that works with machine learning algorithms to predict prognosis
using lung cancer clinical and gene expression in the GDC data portal.
- Abstract(参考訳): 2021年の初めまで、肺がんは世界で最も一般的ながんとして知られている。
この病気は、職業曝露、喫煙、環境汚染などの要因により一般的である。
疾患の早期診断と治療は、疾患の原因となる原因の予防だけでなく、非常に重要である。
この研究は、GDCデータポータルで肺がんの臨床と遺伝子発現を使用して予後を予測するための機械学習アルゴリズムと連携したWebインターフェースを作成することを計画された。
関連論文リスト
- Application analysis of ai technology combined with spiral CT scanning
in early lung cancer screening [15.6839495538166]
肺癌患者の5年間の生存率は、まだ20%以下であり、進行している。
近年、人工知能技術が腫瘍学に徐々に応用され始めている。
本研究は, 早期肺癌検診において, 安全かつ効率的な検診方法を見いだす目的で, 組み合わせた方法を適用した。
論文 参考訳(メタデータ) (2024-01-26T07:58:09Z) - Cancer-Net PCa-Gen: Synthesis of Realistic Prostate Diffusion Weighted
Imaging Data via Anatomic-Conditional Controlled Latent Diffusion [68.45407109385306]
カナダでは、前立腺がんは男性でもっとも一般的ながんであり、2022年のこの人口統計では、新しいがん症例の20%を占めている。
拡散強調画像(DWI)データを用いた前立腺癌診断,予後,治療計画のためのディープニューラルネットワークの開発には大きな関心が寄せられている。
本研究では,解剖学的条件制御型潜伏拡散戦略の導入により,現実的な前立腺DWIデータを生成するための潜伏拡散の有効性について検討した。
論文 参考訳(メタデータ) (2023-11-30T15:11:03Z) - Cancer-Net PCa-Data: An Open-Source Benchmark Dataset for Prostate
Cancer Clinical Decision Support using Synthetic Correlated Diffusion Imaging
Data [75.77035221531261]
Cancer-Net PCa-Dataは、PCa患者の画像データであるボリュームCDI$s$のオープンソースベンチマークデータセットである。
Cancer-Net PCa-Dataは、PCa用のCDI$s$画像データの最初の公開データセットである。
論文 参考訳(メタデータ) (2023-11-20T10:28:52Z) - Cancer-Net BCa-S: Breast Cancer Grade Prediction using Volumetric Deep
Radiomic Features from Synthetic Correlated Diffusion Imaging [82.74877848011798]
乳がんの流行は成長を続けており、2023年には米国で約30万人の女性に影響を及ぼした。
金標準のScarff-Bloom-Richardson(SBR)グレードは、化学療法に対する患者の反応を一貫して示すことが示されている。
本稿では,合成相関拡散(CDI$s$)画像を用いた乳がん鑑定における深層学習の有効性について検討する。
論文 参考訳(メタデータ) (2023-04-12T15:08:34Z) - A Multi-Institutional Open-Source Benchmark Dataset for Breast Cancer
Clinical Decision Support using Synthetic Correlated Diffusion Imaging Data [82.74877848011798]
Cancer-Net BCaは、乳がん患者の画像データであるボリュームCDI$s$の複数機関のオープンソースベンチマークデータセットである。
Cancer-Net BCaは、機械学習の進歩を加速し、がんと戦う臨床医を助ける、グローバルなオープンソースイニシアチブの一部として、一般公開されている。
論文 参考訳(メタデータ) (2023-04-12T05:41:44Z) - Deep Learning Approach for Early Stage Lung Cancer Detection [0.0]
肺癌患者の生存率は遅発診断による他のがん患者と比較して非常に低い。
本稿ではCTスキャンによる早期肺癌の予測と診断のためのディープラーニングモデルを提案する。
論文 参考訳(メタデータ) (2023-02-05T18:50:12Z) - Machine Learning Methods for Cancer Classification Using Gene Expression
Data: A Review [77.34726150561087]
がんは心臓血管疾患の2番目の死因である。
遺伝子発現は癌の早期発見において基本的な役割を担っている。
本研究は,機械学習を用いた癌分類における遺伝子発現解析の最近の進歩を概説する。
論文 参考訳(メタデータ) (2023-01-28T15:03:03Z) - Classification of Histopathology Images of Lung Cancer Using
Convolutional Neural Network (CNN) [0.2578242050187029]
がんは人体内の異常な細胞の制御不能な細胞分裂であり、他の臓器に拡がることがある。
非感染性疾患(NCD)の1つであり、NCDは全世界で死者の71%を占めている。
乳癌は女性乳癌に次いで2番目に多いがんである。肺癌の生存率は19%に過ぎない。
論文 参考訳(メタデータ) (2021-12-27T07:43:58Z) - Early Diagnosis of Lung Cancer Using Computer Aided Detection via Lung
Segmentation Approach [0.1749935196721634]
アメリカがん協会は、がんによる死亡件数の約27%を推定している。
その進化の初期段階では、肺がんは通常は症状を起こさない。
多くの患者は、症状がより顕著になり、治療が不十分で死亡率の高い進行期に診断されている。
論文 参考訳(メタデータ) (2021-07-23T05:46:06Z) - Handling uncertainty using features from pathology: opportunities in
primary care data for developing high risk cancer survival methods [0.10499611180329804]
2019年、オーストラリア人144万人以上ががんと診断された。
大多数は、スクリーニングプログラムが存在する癌でさえ、症状的にGPに最初に現れます。
病理検査の結果ががんの予後を予測できる特徴の導出にどのようにつながるか検討する。
論文 参考訳(メタデータ) (2020-12-17T23:27:13Z) - CancerNet-SCa: Tailored Deep Neural Network Designs for Detection of
Skin Cancer from Dermoscopy Images [71.68436132514542]
皮膚がんはアメリカ合衆国で最も頻繁に診断されるがんである。
本研究では,皮膚内視鏡画像から皮膚がんを検出するための深層神経回路の設計手法である CancerNet-SCa について紹介する。
論文 参考訳(メタデータ) (2020-11-21T02:17:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。