論文の概要: Navigation Turing Test (NTT): Learning to Evaluate Human-Like Navigation
- arxiv url: http://arxiv.org/abs/2105.09637v1
- Date: Thu, 20 May 2021 10:14:23 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-21 18:00:25.620983
- Title: Navigation Turing Test (NTT): Learning to Evaluate Human-Like Navigation
- Title(参考訳): ナビゲーションチューリングテスト(NTT):人間のようなナビゲーションを評価するための学習
- Authors: Sam Devlin, Raluca Georgescu, Ida Momennejad, Jaroslaw Rzepecki,
Evelyn Zuniga, Gavin Costello, Guy Leroy, Ali Shaw and Katja Hofmann
- Abstract要約: 複雑な人間のような振る舞いを学習するエージェントを開発する上で重要な課題は、人間の類似性を迅速かつ正確に定量化する必要があることである。
これらの制限に対処するために,人間に近い人間の判断を学習する新しい自動ナビゲーションチューリングテスト(ANTT)を提案する。
- 参考スコア(独自算出の注目度): 9.456752543341464
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A key challenge on the path to developing agents that learn complex
human-like behavior is the need to quickly and accurately quantify
human-likeness. While human assessments of such behavior can be highly
accurate, speed and scalability are limited. We address these limitations
through a novel automated Navigation Turing Test (ANTT) that learns to predict
human judgments of human-likeness. We demonstrate the effectiveness of our
automated NTT on a navigation task in a complex 3D environment. We investigate
six classification models to shed light on the types of architectures best
suited to this task, and validate them against data collected through a human
NTT. Our best models achieve high accuracy when distinguishing true human and
agent behavior. At the same time, we show that predicting finer-grained human
assessment of agents' progress towards human-like behavior remains unsolved.
Our work takes an important step towards agents that more effectively learn
complex human-like behavior.
- Abstract(参考訳): 複雑な人間のような振る舞いを学習するエージェントを開発する上で重要な課題は、人間の類似性を迅速かつ正確に定量化する必要があることである。
人間の行動評価は非常に正確であるが、速度とスケーラビリティは限られている。
これらの制限に対処するために,人間に近い人間の判断を学習する新しい自動ナビゲーションチューリングテスト(ANTT)を提案する。
複雑な3次元環境におけるナビゲーション作業における自動NTTの有効性を示す。
この課題に最も適したアーキテクチャのタイプを6つの分類モデルで明らかにし,人間のNTTで収集したデータに対して検証する。
我々の最良のモデルは、真の人間とエージェントの行動を区別する際に高い精度を達成する。
同時に, エージェントの人間的行動に対する進歩を微粒度で予測する手法は未解決であることを示した。
私たちの仕事は、複雑な人間のような振る舞いをより効果的に学習するエージェントに向かって重要な一歩を踏み出します。
関連論文リスト
- Offline Imitation Learning Through Graph Search and Retrieval [57.57306578140857]
模倣学習は、ロボットが操作スキルを取得するための強力な機械学習アルゴリズムである。
本稿では,グラフ検索と検索により,最適下実験から学習する,シンプルで効果的なアルゴリズムGSRを提案する。
GSRは、ベースラインに比べて10%から30%高い成功率、30%以上の熟練を達成できる。
論文 参考訳(メタデータ) (2024-07-22T06:12:21Z) - CoNav: A Benchmark for Human-Centered Collaborative Navigation [66.6268966718022]
協調ナビゲーション(CoNav)ベンチマークを提案する。
われわれのCoNavは、現実的で多様な人間の活動を伴う3Dナビゲーション環境を構築するという重要な課題に取り組む。
本研究では,長期的意図と短期的意図の両方を推論する意図認識エージェントを提案する。
論文 参考訳(メタデータ) (2024-06-04T15:44:25Z) - Real-time Addressee Estimation: Deployment of a Deep-Learning Model on
the iCub Robot [52.277579221741746]
住所推定は、社会ロボットが人間とスムーズに対話するために必要なスキルである。
人間の知覚スキルにインスパイアされたディープラーニングモデルは、iCubロボットに設計、訓練、デプロイされる。
本研究では,人間-ロボットのリアルタイムインタラクションにおいて,そのような実装の手順とモデルの性能について述べる。
論文 参考訳(メタデータ) (2023-11-09T13:01:21Z) - Habitat 3.0: A Co-Habitat for Humans, Avatars and Robots [119.55240471433302]
Habitat 3.0は、家庭環境における協調ロボットタスクを研究するためのシミュレーションプラットフォームである。
複雑な変形可能な体と外観と運動の多様性をモデル化する際の課題に対処する。
Human-in-the-loopインフラストラクチャは、マウス/キーボードまたはVRインターフェースを介してシミュレーションされたロボットとの実際のヒューマンインタラクションを可能にする。
論文 参考訳(メタデータ) (2023-10-19T17:29:17Z) - SACSoN: Scalable Autonomous Control for Social Navigation [62.59274275261392]
我々は、社会的に邪魔にならないナビゲーションのための政策の訓練方法を開発した。
この反事実的摂動を最小化することにより、共有空間における人間の自然な振る舞いを変えない方法でロボットに行動を促すことができる。
屋内移動ロボットが人間の傍観者と対話する大規模なデータセットを収集する。
論文 参考訳(メタデータ) (2023-06-02T19:07:52Z) - Navigates Like Me: Understanding How People Evaluate Human-Like AI in
Video Games [36.96985093527702]
エージェントとベースラインAIエージェントが生成するナビゲーション行動の人間的類似性を比較したクラウドソースによる数百のアセスメントを収集する。
提案するエージェントはチューリングテストに合格するが,ベースラインエージェントは合格しない。
この研究は、ゴール指向のビデオゲームナビゲーションの文脈において、人間が人間的と考える特性に関する洞察を提供する。
論文 参考訳(メタデータ) (2023-03-02T18:59:04Z) - Human-Like Navigation Behavior: A Statistical Evaluation Framework [0.0]
我々は,人工エージェントの挙動と人間プレイヤーの挙動を比較するために,非パラメトリック2サンプル仮説テストを構築した。
結果として得られる$p$-valueは、人間のような行動の無名な判断と一致しているだけでなく、類似性の尺度として使用できることを示す。
論文 参考訳(メタデータ) (2022-03-10T01:07:34Z) - AGENT: A Benchmark for Core Psychological Reasoning [60.35621718321559]
直観心理学は、観察可能な行動を駆動する隠された精神変数を推論する能力です。
他のエージェントを推論する機械エージェントに対する近年の関心にもかかわらず、そのようなエージェントが人間の推論を駆動するコア心理学の原則を学ぶか保持するかは明らかではない。
本稿では,プロシージャが生成する3dアニメーション,エージェントを4つのシナリオで構成したベンチマークを提案する。
論文 参考訳(メタデータ) (2021-02-24T14:58:23Z) - Imitating Interactive Intelligence [24.95842455898523]
仮想環境の簡略化を用いて、人間と自然に相互作用できる人工エージェントの設計方法を検討する。
人間とロバストに相互作用できるエージェントを構築するには、人間と対話しながらトレーニングするのが理想的です。
我々は,人間とエージェントエージェントの対話行動の相違を低減するために,逆強化学習の考え方を用いる。
論文 参考訳(メタデータ) (2020-12-10T13:55:47Z) - Human-robot co-manipulation of extended objects: Data-driven models and
control from analysis of human-human dyads [2.7036498789349244]
我々は人間と人間のダイアド実験のデータを用いて、物理的な人間とロボットのコマニピュレーションタスクに使用する動きの意図を決定する。
我々は、過去の動きに基づく人間の意図を予測するために、人間と人間のトライアルの動作データに基づくディープニューラルネットワークを開発した。
論文 参考訳(メタデータ) (2020-01-03T21:23:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。