論文の概要: Navigates Like Me: Understanding How People Evaluate Human-Like AI in
Video Games
- arxiv url: http://arxiv.org/abs/2303.02160v1
- Date: Thu, 2 Mar 2023 18:59:04 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-07 21:18:34.569106
- Title: Navigates Like Me: Understanding How People Evaluate Human-Like AI in
Video Games
- Title(参考訳): Navigates Like Me: ビデオゲームで人間のようなAIを評価する方法を理解する
- Authors: Stephanie Milani, Arthur Juliani, Ida Momennejad, Raluca Georgescu,
Jaroslaw Rzpecki, Alison Shaw, Gavin Costello, Fei Fang, Sam Devlin, Katja
Hofmann
- Abstract要約: エージェントとベースラインAIエージェントが生成するナビゲーション行動の人間的類似性を比較したクラウドソースによる数百のアセスメントを収集する。
提案するエージェントはチューリングテストに合格するが,ベースラインエージェントは合格しない。
この研究は、ゴール指向のビデオゲームナビゲーションの文脈において、人間が人間的と考える特性に関する洞察を提供する。
- 参考スコア(独自算出の注目度): 36.96985093527702
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We aim to understand how people assess human likeness in navigation produced
by people and artificially intelligent (AI) agents in a video game. To this
end, we propose a novel AI agent with the goal of generating more human-like
behavior. We collect hundreds of crowd-sourced assessments comparing the
human-likeness of navigation behavior generated by our agent and baseline AI
agents with human-generated behavior. Our proposed agent passes a Turing Test,
while the baseline agents do not. By passing a Turing Test, we mean that human
judges could not quantitatively distinguish between videos of a person and an
AI agent navigating. To understand what people believe constitutes human-like
navigation, we extensively analyze the justifications of these assessments.
This work provides insights into the characteristics that people consider
human-like in the context of goal-directed video game navigation, which is a
key step for further improving human interactions with AI agents.
- Abstract(参考訳): 本研究の目的は、人間とAIエージェントが生み出すナビゲーションにおける人間の類似性を評価する方法を理解することである。
そこで我々は,より人間的な行動を生み出すことを目的とした,新しいAIエージェントを提案する。
エージェントとベースラインAIエージェントが生成するナビゲーション行動と人為的行動とを比較した,クラウドソースによる数百のアセスメントを収集する。
提案するエージェントはチューリングテストに合格するが,ベースラインエージェントは合格しない。
チューリングテストに合格することで、人間の裁判官は、人のビデオとナビゲートするAIエージェントを定量的に区別できないことを意味します。
人間のようなナビゲーションを構成すると考えるものを理解するため、これらの評価の正当性を広範囲に分析する。
この研究は、AIエージェントとのヒューマンインタラクションをさらに改善するための重要なステップである、ゴール指向のビデオゲームナビゲーションの文脈において、人間が人間のように考える特性に関する洞察を提供する。
関連論文リスト
- Human Bias in the Face of AI: The Role of Human Judgement in AI Generated Text Evaluation [48.70176791365903]
本研究では、偏見がAIと人為的コンテンツの知覚をどう形成するかを考察する。
ラベル付きおよびラベルなしコンテンツに対するヒトのラッカーの反応について検討した。
論文 参考訳(メタデータ) (2024-09-29T04:31:45Z) - On the Utility of Accounting for Human Beliefs about AI Intention in Human-AI Collaboration [9.371527955300323]
我々は、人間がどのように解釈し、AIパートナーの意図を判断するかを捉える人間の信念のモデルを開発する。
私たちは、人間と対話するための戦略を考案する際に、人間の行動と人間の信念の両方を取り入れたAIエージェントを作成します。
論文 参考訳(メタデータ) (2024-06-10T06:39:37Z) - CoNav: A Benchmark for Human-Centered Collaborative Navigation [66.6268966718022]
協調ナビゲーション(CoNav)ベンチマークを提案する。
われわれのCoNavは、現実的で多様な人間の活動を伴う3Dナビゲーション環境を構築するという重要な課題に取り組む。
本研究では,長期的意図と短期的意図の両方を推論する意図認識エージェントを提案する。
論文 参考訳(メタデータ) (2024-06-04T15:44:25Z) - Explainable Human-AI Interaction: A Planning Perspective [32.477369282996385]
AIシステムは、ループ内の人間に説明可能である必要がある。
我々は、AIエージェントがメンタルモデルを使用して人間の期待に沿うか、あるいは説明的コミュニケーションを通じて期待を変更する方法について論じる。
本書の主な焦点は、協調的なシナリオであるが、同じ精神モデルが難読化や偽造にどのように使用できるかを指摘したい。
論文 参考訳(メタデータ) (2024-05-19T22:22:21Z) - Toward Human-AI Alignment in Large-Scale Multi-Player Games [24.784173202415687]
我々はXboxのBleeding Edge(100K+ゲーム)から広範囲にわたる人間のゲームプレイデータを解析する。
人間のプレイヤーは、戦闘飛行や探索飛行行動において多様性を示す一方で、AIプレイヤーは均一性に向かう傾向にある。
これらの大きな違いは、ヒューマンアラインアプリケーションにおけるAIの解釈可能な評価、設計、統合の必要性を浮き彫りにしている。
論文 参考訳(メタデータ) (2024-02-05T22:55:33Z) - Measuring an artificial intelligence agent's trust in humans using
machine incentives [2.1016374925364616]
人間に対するAIエージェントの信頼を評価することは難しい。
本稿では,AIエージェントのアルゴリズムやゴールオリエンテーションを変更することなく,機械決定をインセンティブ化する手法を提案する。
我々の実験は、これまでで最も先進的なAI言語モデルの一つがインセンティブに反応して社会行動を変えることを示唆している。
論文 参考訳(メタデータ) (2022-12-27T06:05:49Z) - On some Foundational Aspects of Human-Centered Artificial Intelligence [52.03866242565846]
人間中心人工知能(Human Centered Artificial Intelligence)の意味については明確な定義はない。
本稿では,AIコンポーネントを備えた物理・ソフトウェア計算エージェントを指すHCAIエージェントについて紹介する。
HCAIエージェントの概念は、そのコンポーネントや機能とともに、人間中心のAIに関する技術的および非技術的議論を橋渡しする手段であると考えています。
論文 参考訳(メタデータ) (2021-12-29T09:58:59Z) - Trustworthy AI: A Computational Perspective [54.80482955088197]
我々は,信頼に値するAIを実現する上で最も重要な6つの要素,(i)安全とロバスト性,(ii)非差別と公正,(iii)説明可能性,(iv)プライバシー,(v)説明可能性と監査性,(vi)環境ウェルビーイングに焦点をあてる。
各次元について、分類学に基づく最近の関連技術について概観し、実世界のシステムにおけるそれらの応用を概説する。
論文 参考訳(メタデータ) (2021-07-12T14:21:46Z) - Navigation Turing Test (NTT): Learning to Evaluate Human-Like Navigation [9.456752543341464]
複雑な人間のような振る舞いを学習するエージェントを開発する上で重要な課題は、人間の類似性を迅速かつ正確に定量化する必要があることである。
これらの制限に対処するために,人間に近い人間の判断を学習する新しい自動ナビゲーションチューリングテスト(ANTT)を提案する。
論文 参考訳(メタデータ) (2021-05-20T10:14:23Z) - Watch-And-Help: A Challenge for Social Perception and Human-AI
Collaboration [116.28433607265573]
我々は、AIエージェントでソーシャルインテリジェンスをテストするための課題であるWatch-And-Help(WAH)を紹介する。
WAHでは、AIエージェントは、人間のようなエージェントが複雑な家庭用タスクを効率的に実行するのを助ける必要がある。
マルチエージェントの家庭環境であるVirtualHome-Socialを構築し、計画と学習ベースのベースラインを含むベンチマークを提供する。
論文 参考訳(メタデータ) (2020-10-19T21:48:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。