論文の概要: Enabling News Consumers to View and Understand Biased News Coverage: A
Study on the Perception and Visualization of Media Bias
- arxiv url: http://arxiv.org/abs/2105.09640v1
- Date: Thu, 20 May 2021 10:16:54 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-30 07:28:38.903725
- Title: Enabling News Consumers to View and Understand Biased News Coverage: A
Study on the Perception and Visualization of Media Bias
- Title(参考訳): ニュース利用者がバイアス付きニュースを閲覧し理解できるようにする:メディアバイアスの認識と可視化に関する研究
- Authors: Timo Spinde and Felix Hamborg and Karsten Donnay and Angelica Becerra
and Bela Gipp
- Abstract要約: 手動で3つのアノテートデータセットを作成し、さまざまな視覚化戦略をテストする。
その結果, 対照群と比較して, 治療群の偏見に気付く効果は認められなかった。
多段階モデルを用いて、ジャーナリストの偏見は、記事の政治的極性や公平性に大きく関係していることがわかった。
- 参考スコア(独自算出の注目度): 7.092487352312782
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Traditional media outlets are known to report political news in a biased way,
potentially affecting the political beliefs of the audience and even altering
their voting behaviors. Many researchers focus on automatically detecting and
identifying media bias in the news, but only very few studies exist that
systematically analyze how theses biases can be best visualized and
communicated. We create three manually annotated datasets and test varying
visualization strategies. The results show no strong effects of becoming aware
of the bias of the treatment groups compared to the control group, although a
visualization of hand-annotated bias communicated bias instances more
effectively than a framing visualization. Showing participants an overview
page, which opposes different viewpoints on the same topic, does not yield
differences in respondents' bias perception. Using a multilevel model, we find
that perceived journalist bias is significantly related to perceived political
extremeness and impartiality of the article.
- Abstract(参考訳): 伝統的なメディアは、政治的ニュースを偏見のある方法で報告することが知られており、聴衆の政治的信念に影響を与え、投票行動を変えることさえある。
多くの研究者はニュース中のメディアバイアスを自動的に検出し識別することに集中しているが、これらのバイアスがどのように可視化され通信されるかを体系的に分析する研究はごくわずかである。
手動で3つのアノテートデータセットを作成し、さまざまな視覚化戦略をテストする。
以上の結果から, コントロール群に比べ, 治療群のバイアスを自覚する効果は認められなかったが, 手話によるバイアスの可視化は, フラーミング可視化よりも効果的にバイアスインスタンスを伝達した。
参加者に同じトピックの異なる視点に反対する概要ページを示すことは、回答者のバイアス知覚に違いを与えない。
多段階モデルを用いて、ジャーナリストの偏見は、記事の政治的極性や公平性に大きく関係していることがわかった。
関連論文リスト
- The Media Bias Taxonomy: A Systematic Literature Review on the Forms and
Automated Detection of Media Bias [5.579028648465784]
本稿は、2019年から2022年の間に発行された3140の論文を体系的にレビューし、メディアバイアスを検出するための計算方法の研究を要約する。
メディアバイアス検出は,近年,トランスフォーマーに基づく分類手法が顕著な進歩をもたらしている,非常に活発な研究分野であることを示す。
論文 参考訳(メタデータ) (2023-12-26T18:13:52Z) - Understanding Divergent Framing of the Supreme Court Controversies:
Social Media vs. News Outlets [56.67097829383139]
我々は、米国最高裁判所の一連の判決に関して、ソーシャルメディアや伝統的なメディアのフレーミングにおける微妙な区別に焦点を当てている。
メディアが肯定的な行動や中絶の権利を扱い、学生ローンの話題はより深いコンセンサスを示す傾向にある。
論文 参考訳(メタデータ) (2023-09-18T06:40:21Z) - Towards Corpus-Scale Discovery of Selection Biases in News Coverage:
Comparing What Sources Say About Entities as a Start [65.28355014154549]
本稿では,大規模ニュースコーパスにおけるニュースコンテンツから直接メディア選択バイアスのパターンを発見するために,スケーラブルなNLPシステムを構築する上での課題について検討する。
我々は,世界519のニュースソースから180万件のニュース記事のコーパスであるNELA-2020のケーススタディを通じて,フレームワークの能力を示す。
論文 参考訳(メタデータ) (2023-04-06T23:36:45Z) - Bias or Diversity? Unraveling Fine-Grained Thematic Discrepancy in U.S.
News Headlines [63.52264764099532]
われわれは、2014年から2022年までの米国の主要メディアから、180万件のニュース記事の大規模なデータセットを使用している。
我々は、国内政治、経済問題、社会問題、外交の4つの主要なトピックに関連する、きめ細かいテーマの相違を定量化する。
以上の結果から,国内政治や社会問題においては,一定のメディア偏見が原因であることが示唆された。
論文 参考訳(メタデータ) (2023-03-28T03:31:37Z) - Unveiling the Hidden Agenda: Biases in News Reporting and Consumption [59.55900146668931]
イタリアのワクチン論争に関する6年間のデータセットを構築し、物語と選択バイアスを特定するためにベイジアン潜在空間モデルを採用する。
バイアスとエンゲージメントの間に非線形な関係が見られ、極端な位置へのエンゲージメントが高くなった。
Twitter上でのニュース消費の分析は、同様のイデオロギー的な立場のニュースメディアの間で、一般的なオーディエンスを明らかにしている。
論文 参考訳(メタデータ) (2023-01-14T18:58:42Z) - NeuS: Neutral Multi-News Summarization for Mitigating Framing Bias [54.89737992911079]
様々な政治スペクトルの複数のニュース見出しから中立的な要約を生成する新しい課題を提案する。
最も興味深い観察の1つは、生成モデルは、事実的に不正確なコンテンツや検証不可能なコンテンツだけでなく、政治的に偏ったコンテンツにも幻覚を与えることができることである。
論文 参考訳(メタデータ) (2022-04-11T07:06:01Z) - An Interdisciplinary Approach for the Automated Detection and
Visualization of Media Bias in News Articles [0.0]
メディアバイアスを識別するためのデータセットや手法を考案することを目指しています。
私のビジョンは、ニュース読者が偏見によるメディアカバレッジの違いを認識できるようにするシステムを開発することです。
論文 参考訳(メタデータ) (2021-12-26T10:46:32Z) - Newsalyze: Effective Communication of Person-Targeting Biases in News
Articles [8.586057042714698]
本稿では,自然言語理解の最先端手法を組み合わせたバイアス識別システムを提案する。
第2に,非専門家のニュース消費者にニュース記事のバイアスを伝えるために,バイアスに敏感な可視化を考案する。
第3に、私たちの主な貢献は、日々のニュース消費を近似した設定においてバイアス認識を測定する大規模なユーザスタディです。
論文 参考訳(メタデータ) (2021-10-18T10:23:19Z) - How to Effectively Identify and Communicate Person-Targeting Media Bias
in Daily News Consumption? [8.586057042714698]
本稿では,コンテンツ分析のマニュアル処理を初めて自動化した,ニュースレコメンデーションのためのインプログレスシステムを提案する。
我々の推薦者は、個々のニュース記事に実際に存在している重要なフレームを検出し、明らかにする。
本研究は,イベントの異なる設定のニュース記事の推薦が,バイアスに対する意識を著しく向上させることを示す。
論文 参考訳(メタデータ) (2021-10-18T10:13:23Z) - Mundus vult decipi, ergo decipiatur: Visual Communication of Uncertainty
in Election Polls [56.8172499765118]
我々は、今放送と予測におけるバイアスの潜在的な源について論じる。
概念は、誤認識された正確性の問題を軽減するために提示される。
主要なアイデアの1つは、パーティーシェアではなくイベントの確率を使うことである。
論文 参考訳(メタデータ) (2021-04-28T07:02:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。