Hamiltonian Model for Fault Tolerant Singlet-Like Excitation: First
Principles Approach
- URL: http://arxiv.org/abs/2105.09766v1
- Date: Thu, 20 May 2021 14:14:00 GMT
- Title: Hamiltonian Model for Fault Tolerant Singlet-Like Excitation: First
Principles Approach
- Authors: Donghyun Jin, Grihith Manchanda and Dragomir Davidovic
- Abstract summary: We investigate the reduced state of two qubits coupled to each other via a common heat bath of linear harmonics.
We search for evidence of fault-tolerant excited qubit states.
We emphasize the central role of the Lambshift as an agent responsible for fault tolerant excitations.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deriving quantum error correction and quantum control from the Schrodinger
equation for a unified qubit-environment Hamiltonian will give insights into
how microscopic degrees of freedom affect the capability to control and correct
quantum information beyond that of phenomenological theory. Here, we
investigate the asymptotic reduced state of two qubits coupled to each other
solely via a common heat bath of linear harmonic oscillators and search for
evidence of fault-tolerant excited qubit states. We vary the Hamiltonian
parameters, including the qubit-qubit and qubit-bath detuning, the bath
spectral density, and whether or not we use the Markov approximation in the
calculation of our dynamics. In proximity to special values of these
parameters, we identify these states as asymptotic reduced states that are
arbitrarily pure, excited, unique, and have high singlet fidelity. We emphasize
the central role of the Lamb-shift as an agent responsible for fault tolerant
excitations. To learn how these parameters relate to performance, we discuss
numerical studies on fidelity and error recovery time.
Related papers
- Coherence generation with Hamiltonians [44.99833362998488]
We explore methods to generate quantum coherence through unitary evolutions.
This quantity is defined as the maximum derivative of coherence that can be achieved by a Hamiltonian.
We identify the quantum states that lead to the largest coherence derivative induced by the Hamiltonian.
arXiv Detail & Related papers (2024-02-27T15:06:40Z) - Amplification of quantum transfer and quantum ratchet [56.47577824219207]
We study a model of amplification of quantum transfer and making it directed which we call the quantum ratchet model.
The ratchet effect is achieved in the quantum control model with dissipation and sink, where the Hamiltonian depends on vibrations in the energy difference synchronized with transitions between energy levels.
Amplitude and frequency of the oscillating vibron together with the dephasing rate are the parameters of the quantum ratchet which determine its efficiency.
arXiv Detail & Related papers (2023-12-31T14:04:43Z) - A protocol to characterize errors in quantum simulation of many-body
physics [1.4028140181591504]
We show that the symmetries of the target many-body Hamiltonian can be used to benchmark and characterize experimental errors in quantum simulation.
We consider two forms of errors: (i) unitary errors arising out of systematic errors in the applied Hamiltonian and (ii) canonical non-Markovian errors arising out of random shot-to-shot fluctuations in the applied Hamiltonian.
arXiv Detail & Related papers (2023-11-06T19:00:07Z) - Quantum Effects on the Synchronization Dynamics of the Kuramoto Model [62.997667081978825]
We show that quantum fluctuations hinder the emergence of synchronization, albeit not entirely suppressing it.
We derive an analytical expression for the critical coupling, highlighting its dependence on the model parameters.
arXiv Detail & Related papers (2023-06-16T16:41:16Z) - Bures and Sjoqvist Metrics over Thermal State Manifolds for Spin Qubits
and Superconducting Flux Qubits [0.0]
We present an explicit analysis of the Bures and Sjoqvist metrics over the inverse of thermal states for specific spin qubit and the superconducting flux qubit Hamiltonian models.
We conclude the two metrics differ in the presence of a nonclassical behavior specified by the noncommutativity of neighboring mixed quantum states.
arXiv Detail & Related papers (2023-03-03T02:48:00Z) - Quantum asymmetry and noisy multi-mode interferometry [55.41644538483948]
Quantum asymmetry is a physical resource which coincides with the amount of coherence between the eigenspaces of a generator.
We show that the asymmetry may emphincrease as a result of a emphdecrease of coherence inside a degenerate subspace.
arXiv Detail & Related papers (2021-07-23T07:30:57Z) - Quantum coherence, correlations and nonclassical states in the two-qubit
Rabi model with parametric oscillator [0.0]
Quantum coherence and quantum correlations are studied in a strongly interacting system composed of two qubits and a parametric medium.
We employ the adiabatic approximation approach to analytically solve the system.
The reconstructed states are observed to be nearly pure generalized Bell states.
arXiv Detail & Related papers (2021-06-12T11:16:40Z) - Assessment of weak-coupling approximations on a driven two-level system
under dissipation [58.720142291102135]
We study a driven qubit through the numerically exact and non-perturbative method known as the Liouville-von equation with dissipation.
We propose a metric that may be used in experiments to map the regime of validity of the Lindblad equation in predicting the steady state of the driven qubit.
arXiv Detail & Related papers (2020-11-11T22:45:57Z) - Probing eigenstate thermalization in quantum simulators via
fluctuation-dissipation relations [77.34726150561087]
The eigenstate thermalization hypothesis (ETH) offers a universal mechanism for the approach to equilibrium of closed quantum many-body systems.
Here, we propose a theory-independent route to probe the full ETH in quantum simulators by observing the emergence of fluctuation-dissipation relations.
Our work presents a theory-independent way to characterize thermalization in quantum simulators and paves the way to quantum simulate condensed matter pump-probe experiments.
arXiv Detail & Related papers (2020-07-20T18:00:02Z) - Non-Markovianity of Quantum Brownian Motion [0.0]
We study quantum non-Markovian dynamics of the Caldeira-Leggett model, a prototypical model for quantum Brownian motion.
A comparison of our results with the corresponding results for the spin-boson problem show a remarkable similarity in the structure of non-Markovian behavior of the two paradigmatic models.
arXiv Detail & Related papers (2020-07-06T16:35:09Z) - Robustness of Measurement-Induced Correlations Under Decoherence Effect [0.0]
We study the dynamics of quantum correlation measures such as entanglement and measurement-induced nonlocality (MIN)
It is observed that all the noises cause sudden death of entanglement for partially entangled states.
We show the existence of separable quantum states with non-zero quantum correlations in terms of MIN.
arXiv Detail & Related papers (2020-04-10T16:54:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.