論文の概要: A practical introduction to the Rational Speech Act modeling framework
- arxiv url: http://arxiv.org/abs/2105.09867v1
- Date: Thu, 20 May 2021 16:08:04 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-21 15:26:03.986647
- Title: A practical introduction to the Rational Speech Act modeling framework
- Title(参考訳): 合理的発話行動モデリングフレームワークの実際的紹介
- Authors: Gregory Scontras, Michael Henry Tessler, Michael Franke
- Abstract要約: 計算認知科学の最近の進歩は、形式的で実装可能なプラグマティクスのモデルにおいて、大きな進歩の道を開いた。
本稿では,ベイズ合理音声法モデリングフレームワークの実践的紹介と批判的評価を行う。
- 参考スコア(独自算出の注目度): 2.1485350418225244
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent advances in computational cognitive science (i.e., simulation-based
probabilistic programs) have paved the way for significant progress in formal,
implementable models of pragmatics. Rather than describing a pragmatic
reasoning process in prose, these models formalize and implement one, deriving
both qualitative and quantitative predictions of human behavior -- predictions
that consistently prove correct, demonstrating the viability and value of the
framework. The current paper provides a practical introduction to and critical
assessment of the Bayesian Rational Speech Act modeling framework, unpacking
theoretical foundations, exploring technological innovations, and drawing
connections to issues beyond current applications.
- Abstract(参考訳): 計算認知科学の最近の進歩(すなわちシミュレーションに基づく確率的プログラム)は、形式的かつ実装可能なプラグマティクスのモデルにおいて大きな進歩を遂げた。
散文で実践的な推論プロセスを記述するのではなく、これらのモデルは形式化して実装し、人間の行動の質的および定量的な予測を導出する。
本論文は,ベイズ合理音声法モデリングフレームワークの実践的紹介と批判的評価,理論的基礎の解き放ち,技術革新の探求,現在の応用を超える問題への接続の図面を提供する。
関連論文リスト
- Causal Abstraction in Model Interpretability: A Compact Survey [5.963324728136442]
因果的抽象化は、モデル行動の基礎となる因果的メカニズムを理解し説明するための原則化されたアプローチを提供する。
本研究は, 因果的抽象の領域を掘り下げ, その理論的基礎, 実践的応用, モデル解釈可能性の分野への含意について考察する。
論文 参考訳(メタデータ) (2024-10-26T12:24:28Z) - The Foundations of Tokenization: Statistical and Computational Concerns [51.370165245628975]
トークン化は、NLPパイプラインにおける重要なステップである。
NLPにおける標準表現法としての重要性は認識されているが、トークン化の理論的基盤はまだ完全には理解されていない。
本稿では,トークン化モデルの表現と解析のための統一的な形式的枠組みを提案することによって,この理論的ギャップに対処することに貢献している。
論文 参考訳(メタデータ) (2024-07-16T11:12:28Z) - ConcEPT: Concept-Enhanced Pre-Training for Language Models [57.778895980999124]
ConcEPTは、概念知識を事前訓練された言語モデルに注入することを目的としている。
これは、事前訓練されたコンテキストで言及されたエンティティの概念を予測するために、外部エンティティの概念予測を利用する。
実験の結果,ConcEPTは概念強化事前学習により概念知識を向上することがわかった。
論文 参考訳(メタデータ) (2024-01-11T05:05:01Z) - Towards a General Framework for Continual Learning with Pre-training [55.88910947643436]
本稿では,事前学習を用いた逐次到着タスクの連続学習のための一般的な枠組みを提案する。
我々はその目的を,タスク内予測,タスク同一性推論,タスク適応予測という3つの階層的構成要素に分解する。
本稿では,パラメータ効率細調整(PEFT)技術と表現統計量を用いて,これらのコンポーネントを明示的に最適化する革新的な手法を提案する。
論文 参考訳(メタデータ) (2023-10-21T02:03:38Z) - Learning to Receive Help: Intervention-Aware Concept Embedding Models [44.1307928713715]
概念ボトルネックモデル (Concept Bottleneck Models, CBM) は、高レベルの概念セットを使用して予測を構築し、説明することによって、ニューラルネットワークの不透明さに対処する。
近年の研究では、介入効果は概念が介入される順序に大きく依存していることが示されている。
IntCEM(Intervention-Aware Concept Embedding Model)は,テスト時間介入に対するモデルの受容性を改善する新しいCBMアーキテクチャとトレーニングパラダイムである。
論文 参考訳(メタデータ) (2023-09-29T02:04:24Z) - Explainability in Process Outcome Prediction: Guidelines to Obtain
Interpretable and Faithful Models [77.34726150561087]
本稿では、プロセス結果予測の分野における説明可能性モデルと説明可能性モデルの忠実性を通して、説明可能性を定義する。
本稿では,イベントログの仕様に基づいて適切なモデルを選択することのできる,X-MOPというガイドラインのセットを提案する。
論文 参考訳(メタデータ) (2022-03-30T05:59:50Z) - Active Inference in Robotics and Artificial Agents: Survey and
Challenges [51.29077770446286]
我々は、状態推定、制御、計画、学習のためのアクティブ推論の最先端理論と実装についてレビューする。
本稿では、適応性、一般化性、堅牢性の観点から、その可能性を示す関連する実験を紹介する。
論文 参考訳(メタデータ) (2021-12-03T12:10:26Z) - Forecasting: theory and practice [65.71277206849244]
本稿は、理論と予測の実践について、非体系的なレビューを提供する。
我々は、幅広い理論的、最先端のモデル、方法、原則、アプローチの概要を提供する。
そして、そのような理論概念が様々な実生活の文脈でどのように適用されるかを示す。
論文 参考訳(メタデータ) (2020-12-04T16:56:44Z) - A Theoretical Approach for a Novel Model to Realizing Empathy [0.0]
本稿では共感の実現過程を可視化するモデルとして理論的概念を紹介する。
このモデルの目的は、様々な分野に適用可能な初期青写真を作成することである。
論文 参考訳(メタデータ) (2020-09-03T17:21:49Z) - Introduction to Rare-Event Predictive Modeling for Inferential
Statisticians -- A Hands-On Application in the Prediction of Breakthrough
Patents [0.0]
本稿では,予測性能の最適化を目的とした定量的分析のための機械学習(ML)手法を提案する。
両フィールド間の潜在的な相乗効果について考察する。
我々は,コンピュータサイエンスの用語のデミスティフィケーションを目指して,定量的な社会科学の聴衆に手持ちの予測モデルの導入を行っている。
論文 参考訳(メタデータ) (2020-03-30T13:06:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。