A practical introduction to the Rational Speech Act modeling framework
- URL: http://arxiv.org/abs/2105.09867v1
- Date: Thu, 20 May 2021 16:08:04 GMT
- Title: A practical introduction to the Rational Speech Act modeling framework
- Authors: Gregory Scontras, Michael Henry Tessler, Michael Franke
- Abstract summary: Recent advances in computational cognitive science paved the way for significant progress in formal, implementable models of pragmatics.
This paper provides a practical introduction to and critical assessment of the Bayesian Rational Speech Act modeling framework.
- Score: 2.1485350418225244
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent advances in computational cognitive science (i.e., simulation-based
probabilistic programs) have paved the way for significant progress in formal,
implementable models of pragmatics. Rather than describing a pragmatic
reasoning process in prose, these models formalize and implement one, deriving
both qualitative and quantitative predictions of human behavior -- predictions
that consistently prove correct, demonstrating the viability and value of the
framework. The current paper provides a practical introduction to and critical
assessment of the Bayesian Rational Speech Act modeling framework, unpacking
theoretical foundations, exploring technological innovations, and drawing
connections to issues beyond current applications.
Related papers
- Causal Abstraction in Model Interpretability: A Compact Survey [5.963324728136442]
causal abstraction provides a principled approach to understanding and explaining the causal mechanisms underlying model behavior.
This survey paper delves into the realm of causal abstraction, examining its theoretical foundations, practical applications, and implications for the field of model interpretability.
arXiv Detail & Related papers (2024-10-26T12:24:28Z) - The Foundations of Tokenization: Statistical and Computational Concerns [51.370165245628975]
Tokenization is a critical step in the NLP pipeline.
Despite its recognized importance as a standard representation method in NLP, the theoretical underpinnings of tokenization are not yet fully understood.
The present paper contributes to addressing this theoretical gap by proposing a unified formal framework for representing and analyzing tokenizer models.
arXiv Detail & Related papers (2024-07-16T11:12:28Z) - ConcEPT: Concept-Enhanced Pre-Training for Language Models [57.778895980999124]
ConcEPT aims to infuse conceptual knowledge into pre-trained language models.
It exploits external entity concept prediction to predict the concepts of entities mentioned in the pre-training contexts.
Results of experiments show that ConcEPT gains improved conceptual knowledge with concept-enhanced pre-training.
arXiv Detail & Related papers (2024-01-11T05:05:01Z) - Towards a General Framework for Continual Learning with Pre-training [55.88910947643436]
We present a general framework for continual learning of sequentially arrived tasks with the use of pre-training.
We decompose its objective into three hierarchical components, including within-task prediction, task-identity inference, and task-adaptive prediction.
We propose an innovative approach to explicitly optimize these components with parameter-efficient fine-tuning (PEFT) techniques and representation statistics.
arXiv Detail & Related papers (2023-10-21T02:03:38Z) - Learning to Receive Help: Intervention-Aware Concept Embedding Models [44.1307928713715]
Concept Bottleneck Models (CBMs) tackle the opacity of neural architectures by constructing and explaining their predictions using a set of high-level concepts.
Recent work has shown that intervention efficacy can be highly dependent on the order in which concepts are intervened.
We propose Intervention-aware Concept Embedding models (IntCEMs), a novel CBM-based architecture and training paradigm that improves a model's receptiveness to test-time interventions.
arXiv Detail & Related papers (2023-09-29T02:04:24Z) - Explainability in Process Outcome Prediction: Guidelines to Obtain
Interpretable and Faithful Models [77.34726150561087]
We define explainability through the interpretability of the explanations and the faithfulness of the explainability model in the field of process outcome prediction.
This paper contributes a set of guidelines named X-MOP which allows selecting the appropriate model based on the event log specifications.
arXiv Detail & Related papers (2022-03-30T05:59:50Z) - Active Inference in Robotics and Artificial Agents: Survey and
Challenges [51.29077770446286]
We review the state-of-the-art theory and implementations of active inference for state-estimation, control, planning and learning.
We showcase relevant experiments that illustrate its potential in terms of adaptation, generalization and robustness.
arXiv Detail & Related papers (2021-12-03T12:10:26Z) - Forecasting: theory and practice [65.71277206849244]
This article provides a non-systematic review of the theory and the practice of forecasting.
We provide an overview of a wide range of theoretical, state-of-the-art models, methods, principles, and approaches.
We then demonstrate how such theoretical concepts are applied in a variety of real-life contexts.
arXiv Detail & Related papers (2020-12-04T16:56:44Z) - A Theoretical Approach for a Novel Model to Realizing Empathy [0.0]
This paper introduces a theoretical concept as a proposed model that visualizes the process of realizing empathy.
The intended purpose of this proposed model, is to create an initial blueprint that may be applicable to a range of disciplines.
arXiv Detail & Related papers (2020-09-03T17:21:49Z) - Introduction to Rare-Event Predictive Modeling for Inferential
Statisticians -- A Hands-On Application in the Prediction of Breakthrough
Patents [0.0]
We introduce a machine learning (ML) approach to quantitative analysis geared towards optimizing the predictive performance.
We discuss the potential synergies between the two fields against the backdrop of this, at first glance, target-incompatibility.
We are providing a hands-on predictive modeling introduction for a quantitative social science audience while aiming at demystifying computer science jargon.
arXiv Detail & Related papers (2020-03-30T13:06:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.