Multi-Task, Multi-Domain Deep Segmentation with Shared Representations
and Contrastive Regularization for Sparse Pediatric Datasets
- URL: http://arxiv.org/abs/2105.10310v1
- Date: Fri, 21 May 2021 12:26:05 GMT
- Title: Multi-Task, Multi-Domain Deep Segmentation with Shared Representations
and Contrastive Regularization for Sparse Pediatric Datasets
- Authors: Arnaud Boutillon, Pierre-Henri Conze, Christelle Pons, Val\'erie
Burdin, Bhushan Borotikar
- Abstract summary: We propose to train a segmentation model on multiple datasets, arising from different parts of the anatomy, in a multi-task and multi-domain learning framework.
The proposed segmentation network comprises shared convolutional filters, domain-specific batch normalization parameters that compute the respective dataset statistics.
We evaluate our contributions on two pediatric imaging datasets of the ankle and shoulder joints for bone segmentation.
- Score: 0.5249805590164902
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Automatic segmentation of magnetic resonance (MR) images is crucial for
morphological evaluation of the pediatric musculoskeletal system in clinical
practice. However, the accuracy and generalization performance of individual
segmentation models are limited due to the restricted amount of annotated
pediatric data. Hence, we propose to train a segmentation model on multiple
datasets, arising from different parts of the anatomy, in a multi-task and
multi-domain learning framework. This approach allows to overcome the inherent
scarcity of pediatric data while benefiting from a more robust shared
representation. The proposed segmentation network comprises shared
convolutional filters, domain-specific batch normalization parameters that
compute the respective dataset statistics and a domain-specific segmentation
layer. Furthermore, a supervised contrastive regularization is integrated to
further improve generalization capabilities, by promoting intra-domain
similarity and impose inter-domain margins in embedded space. We evaluate our
contributions on two pediatric imaging datasets of the ankle and shoulder
joints for bone segmentation. Results demonstrate that the proposed model
outperforms state-of-the-art approaches.
Related papers
- MI-SegNet: Mutual Information-Based US Segmentation for Unseen Domain
Generalization [36.71630929695019]
Generalization capabilities of learning-based medical image segmentation across domains are currently limited by the performance degradation caused by the domain shift.
We propose MI-SegNet, a novel mutual information (MI) based framework to explicitly disentangle the anatomical and domain feature representations.
We validate the generalizability of the proposed domain-independent segmentation approach on several datasets with varying parameters and machines.
arXiv Detail & Related papers (2023-03-22T15:30:44Z) - Generalizable Medical Image Segmentation via Random Amplitude Mixup and
Domain-Specific Image Restoration [17.507951655445652]
We present a novel generalizable medical image segmentation method.
To be specific, we design our approach as a multi-task paradigm by combining the segmentation model with a self-supervision domain-specific image restoration module.
We demonstrate the performance of our method on two public generalizable segmentation benchmarks in medical images.
arXiv Detail & Related papers (2022-08-08T03:56:20Z) - Generalizable multi-task, multi-domain deep segmentation of sparse
pediatric imaging datasets via multi-scale contrastive regularization and
multi-joint anatomical priors [0.41998444721319217]
We propose to design a novel multi-task, multi-domain learning framework in which a single segmentation network is optimized over multiple datasets.
We evaluate our contributions for performing bone segmentation using three scarce and pediatric imaging datasets of the ankle, knee, and shoulder joints.
arXiv Detail & Related papers (2022-07-27T12:59:16Z) - Contrastive Domain Disentanglement for Generalizable Medical Image
Segmentation [12.863227646939563]
We propose Contrastive Disentangle Domain (CDD) network for generalizable medical image segmentation.
We first introduce a disentangle network to decompose medical images into an anatomical representation factor and a modality representation factor.
We then propose a domain augmentation strategy that can randomly generate new domains for model generalization training.
arXiv Detail & Related papers (2022-05-13T10:32:41Z) - Automatic size and pose homogenization with spatial transformer network
to improve and accelerate pediatric segmentation [51.916106055115755]
We propose a new CNN architecture that is pose and scale invariant thanks to the use of Spatial Transformer Network (STN)
Our architecture is composed of three sequential modules that are estimated together during training.
We test the proposed method in kidney and renal tumor segmentation on abdominal pediatric CT scanners.
arXiv Detail & Related papers (2021-07-06T14:50:03Z) - Cross-Modality Brain Tumor Segmentation via Bidirectional
Global-to-Local Unsupervised Domain Adaptation [61.01704175938995]
In this paper, we propose a novel Bidirectional Global-to-Local (BiGL) adaptation framework under a UDA scheme.
Specifically, a bidirectional image synthesis and segmentation module is proposed to segment the brain tumor.
The proposed method outperforms several state-of-the-art unsupervised domain adaptation methods by a large margin.
arXiv Detail & Related papers (2021-05-17T10:11:45Z) - Few-shot Medical Image Segmentation using a Global Correlation Network
with Discriminative Embedding [60.89561661441736]
We propose a novel method for few-shot medical image segmentation.
We construct our few-shot image segmentor using a deep convolutional network trained episodically.
We enhance discriminability of deep embedding to encourage clustering of the feature domains of the same class.
arXiv Detail & Related papers (2020-12-10T04:01:07Z) - Multi-structure bone segmentation in pediatric MR images with combined
regularization from shape priors and adversarial network [0.4588028371034407]
We propose a new pre-trained regularized convolutional encoder-decoder network for the challenging task of segmenting heterogeneous pediatric magnetic resonance (MR) images.
In order to obtain globally consistent predictions, we incorporate a shape priors based regularization, derived from a non-linear shape representation learnt by an auto-encoder.
The proposed method performed either better or at par with previously proposed approaches for Dice, sensitivity, specificity, maximum symmetric surface distance, average symmetric surface distance, and relative absolute volume difference metrics.
arXiv Detail & Related papers (2020-09-15T13:39:53Z) - Shape-aware Meta-learning for Generalizing Prostate MRI Segmentation to
Unseen Domains [68.73614619875814]
We present a novel shape-aware meta-learning scheme to improve the model generalization in prostate MRI segmentation.
Experimental results show that our approach outperforms many state-of-the-art generalization methods consistently across all six settings of unseen domains.
arXiv Detail & Related papers (2020-07-04T07:56:02Z) - MS-Net: Multi-Site Network for Improving Prostate Segmentation with
Heterogeneous MRI Data [75.73881040581767]
We propose a novel multi-site network (MS-Net) for improving prostate segmentation by learning robust representations.
Our MS-Net improves the performance across all datasets consistently, and outperforms state-of-the-art methods for multi-site learning.
arXiv Detail & Related papers (2020-02-09T14:11:50Z) - Unsupervised Bidirectional Cross-Modality Adaptation via Deeply
Synergistic Image and Feature Alignment for Medical Image Segmentation [73.84166499988443]
We present a novel unsupervised domain adaptation framework, named as Synergistic Image and Feature Alignment (SIFA)
Our proposed SIFA conducts synergistic alignment of domains from both image and feature perspectives.
Experimental results on two different tasks demonstrate that our SIFA method is effective in improving segmentation performance on unlabeled target images.
arXiv Detail & Related papers (2020-02-06T13:49:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.