論文の概要: 3D Human Pose Regression using Graph Convolutional Network
- arxiv url: http://arxiv.org/abs/2105.10379v1
- Date: Fri, 21 May 2021 14:41:31 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-25 03:22:44.298520
- Title: 3D Human Pose Regression using Graph Convolutional Network
- Title(参考訳): グラフ畳み込みネットワークを用いた3次元姿勢回帰
- Authors: Soubarna Banik, Alejandro Mendoza Gracia, Alois Knoll
- Abstract要約: 本稿では,2次元のポーズから3次元のポーズ回帰を行うために,PoseGraphNetというグラフ畳み込みネットワークを提案する。
我々のモデルの性能は最先端に近いが、パラメータははるかに少ない。
- 参考スコア(独自算出の注目度): 68.8204255655161
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: 3D human pose estimation is a difficult task, due to challenges such as
occluded body parts and ambiguous poses. Graph convolutional networks encode
the structural information of the human skeleton in the form of an adjacency
matrix, which is beneficial for better pose prediction. We propose one such
graph convolutional network named PoseGraphNet for 3D human pose regression
from 2D poses. Our network uses an adaptive adjacency matrix and kernels
specific to neighbor groups. We evaluate our model on the Human3.6M dataset
which is a standard dataset for 3D pose estimation. Our model's performance is
close to the state-of-the-art, but with much fewer parameters. The model learns
interesting adjacency relations between joints that have no physical
connections, but are behaviorally similar.
- Abstract(参考訳): 3次元の人間のポーズ推定は、隠された身体の部分やあいまいなポーズなどの課題のために難しい作業である。
グラフ畳み込みネットワークは、人間の骨格の構造情報を隣接行列の形で符号化する。
本稿では,2次元のポーズから3次元のポーズ回帰を行うために,PoseGraphNetというグラフ畳み込みネットワークを提案する。
ネットワークは適応隣接行列と隣接群に特有のカーネルを用いる。
我々は,3次元ポーズ推定のための標準データセットであるHuman3.6Mデータセットを用いてモデルを評価する。
我々のモデルの性能は最先端に近いが、パラメータははるかに少ない。
このモデルは、物理的な接続を持たないが行動的に類似した関節間の興味深い隣接関係を学習する。
関連論文リスト
- MUG: Multi-human Graph Network for 3D Mesh Reconstruction from 2D Pose [20.099670445427964]
単一の単分子画像からマルチヒューマンボディメッシュを再構築することは重要な問題であるが、コンピュータビジョンの問題である。
本研究では,単一グラフニューラルネットワークを用いて,マルチヒューマン2次元ポーズのみを入力として,コヒーレントなマルチヒューマンメッシュを構築する。
論文 参考訳(メタデータ) (2022-05-25T08:54:52Z) - AdaptPose: Cross-Dataset Adaptation for 3D Human Pose Estimation by
Learnable Motion Generation [24.009674750548303]
トレーニング済みの3Dポーズ推定器を新しいデータセットでテストすると、大きなパフォーマンス低下が発生する。
本稿では、ソースデータセットから合成された3次元人間の動きを生成するエンドツーエンドフレームワークであるAdaptPoseを提案する。
提案手法は, 部分的な3Dアノテーションを用いた半教師あり学習法を16%, クロスデータセット評価において14%, 従来の半教師あり学習法よりも16%優れていた。
論文 参考訳(メタデータ) (2021-12-22T00:27:52Z) - Graph-Based 3D Multi-Person Pose Estimation Using Multi-View Images [79.70127290464514]
我々は,タスクを2つの段階,すなわち人物のローカライゼーションとポーズ推定に分解する。
また,効率的なメッセージパッシングのための3つのタスク固有グラフニューラルネットワークを提案する。
提案手法は,CMU Panoptic と Shelf のデータセット上での最先端性能を実現する。
論文 参考訳(メタデータ) (2021-09-13T11:44:07Z) - Pose2Mesh: Graph Convolutional Network for 3D Human Pose and Mesh
Recovery from a 2D Human Pose [70.23652933572647]
本稿では,人間のメッシュ頂点の3次元座標を直接推定するグラフ畳み込みニューラルネットワーク(GraphCNN)を提案する。
我々のPose2Meshは、様々なベンチマークデータセットにおいて、以前の3次元人間のポーズとメッシュ推定方法よりも優れていることを示す。
論文 参考訳(メタデータ) (2020-08-20T16:01:56Z) - Unsupervised 3D Human Pose Representation with Viewpoint and Pose
Disentanglement [63.853412753242615]
優れた3次元ポーズ表現を学習することは、人間のポーズ関連タスクにとって重要である。
本稿では,3次元ポーズ表現を学習するために,新しいシームズ・デノナイズドオートエンコーダを提案する。
提案手法は,2つの本質的に異なるタスクに対して,最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2020-07-14T14:25:22Z) - Self-Supervised 3D Human Pose Estimation via Part Guided Novel Image
Synthesis [72.34794624243281]
ラベルのないビデオフレームからバリエーションを分離する自己教師付き学習フレームワークを提案する。
3Dポーズと空間部分マップの表現ギャップを埋める、微分可能な形式化により、多様なカメラの動きを持つビデオで操作できる。
論文 参考訳(メタデータ) (2020-04-09T07:55:01Z) - Fusing Wearable IMUs with Multi-View Images for Human Pose Estimation: A
Geometric Approach [76.10879433430466]
多視点画像と人手足に装着したIMUから3次元人間のポーズを推定する。
まず2つの信号から2Dのポーズを検出し、3D空間に持ち上げる。
単純な2段階のアプローチは、公開データセット上の大きなマージンによる最先端のエラーを低減する。
論文 参考訳(メタデータ) (2020-03-25T00:26:54Z) - PoseNet3D: Learning Temporally Consistent 3D Human Pose via Knowledge
Distillation [6.023152721616894]
PoseNet3Dは入力として2D関節を取り、3DスケルトンとSMPLボディモデルパラメータを出力する。
まず,3Dスケルトンを出力する教師ネットワークをトレーニングし,その知識をSMPL表現で3Dスケルトンを予測する学生ネットワークに抽出する。
3次元ポーズ推定のためのHuman3.6Mデータセットの結果,従来の教師なし手法と比較して3次元関節予測誤差が18%減少することが示された。
論文 参考訳(メタデータ) (2020-03-07T00:10:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。