論文の概要: HyFed: A Hybrid Federated Framework for Privacy-preserving Machine
Learning
- arxiv url: http://arxiv.org/abs/2105.10545v1
- Date: Fri, 21 May 2021 19:30:43 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-25 14:57:20.642453
- Title: HyFed: A Hybrid Federated Framework for Privacy-preserving Machine
Learning
- Title(参考訳): HyFed: プライバシ保護機械学習のためのハイブリッドフェデレーションフレームワーク
- Authors: Reza Nasirigerdeh, Reihaneh Torkzadehmahani, Julian Matschinske, Jan
Baumbach, Daniel Rueckert, Georgios Kaissis
- Abstract要約: フェデレートラーニング(FL)は、クライアントが中央サーバの調整の下でグローバルモデルを共同でトレーニングすることを可能にする。
近年の研究では、FLは、サーバや他のクライアントと共有されるモデルパラメータを通して、クライアントのプライベートデータを漏洩する可能性があることが示されている。
我々は,グローバルモデルの実用性を維持しつつ,FLのプライバシを高めるHyFedフレームワークを提案する。
- 参考スコア(独自算出の注目度): 7.937196235031144
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Federated learning (FL) enables multiple clients to jointly train a global
model under the coordination of a central server. Although FL is a
privacy-aware paradigm, where raw data sharing is not required, recent studies
have shown that FL might leak the private data of a client through the model
parameters shared with the server or the other clients. In this paper, we
present the HyFed framework, which enhances the privacy of FL while preserving
the utility of the global model. HyFed provides developers with a generic API
to develop federated, privacy-preserving algorithms. HyFed supports both
simulation and federated operation modes and its source code is publicly
available at https://github.com/tum-aimed/hyfed.
- Abstract(参考訳): フェデレートラーニング(FL)は、複数のクライアントが中央サーバの調整の下でグローバルモデルを共同でトレーニングすることを可能にする。
FLは、生のデータ共有が不要なプライバシーを意識したパラダイムであるが、最近の研究では、FLは、サーバや他のクライアントと共有されるモデルパラメータを通して、クライアントのプライベートデータを漏洩する可能性がある。
本稿では,グローバルモデルの有用性を維持しつつ,FLのプライバシを高めるHyFedフレームワークを提案する。
HyFedは、フェデレーション付きプライバシ保護アルゴリズムを開発するためのジェネリックAPIを提供する。
HyFedはシミュレーションとフェデレーション操作モードの両方をサポートし、ソースコードはhttps://github.com/tum-aimed/hyfedで公開されている。
関連論文リスト
- Privacy-preserving gradient-based fair federated learning [0.0]
フェデレートラーニング(FL)スキームは、複数の参加者が基盤となるデータを共有することなく、ニューラルネットワークを協調的にトレーニングすることを可能にする。
本稿では,本研究の成果に基づいて,新しい,公正かつプライバシ保護のFLスキームを提案する。
論文 参考訳(メタデータ) (2024-07-18T19:56:39Z) - An Aggregation-Free Federated Learning for Tackling Data Heterogeneity [50.44021981013037]
フェデレートラーニング(FL)は、分散データセットからの知識を活用する効果に頼っている。
従来のFLメソッドでは、クライアントが前回のトレーニングラウンドからサーバが集約したグローバルモデルに基づいてローカルモデルを更新するアグリゲート-then-adaptフレームワークを採用している。
我々は,新しいアグリゲーションフリーFLアルゴリズムであるFedAFを紹介する。
論文 参考訳(メタデータ) (2024-04-29T05:55:23Z) - Tunable Soft Prompts are Messengers in Federated Learning [55.924749085481544]
フェデレートラーニング(FL)は、複数の参加者が分散データソースを使用して機械学習モデルを協調的にトレーニングすることを可能にする。
FLにおけるモデルプライバシ保護の欠如は無視できない課題となっている。
そこで本研究では,ソフトプロンプトによって参加者間の情報交換を実現する新しいFLトレーニング手法を提案する。
論文 参考訳(メタデータ) (2023-11-12T11:01:10Z) - PFL-GAN: When Client Heterogeneity Meets Generative Models in
Personalized Federated Learning [55.930403371398114]
パーソナライズドラーニング(PFL)のための新しいGAN(Generative Adversarial Network)の共有と集約戦略を提案する。
PFL-GANは、異なるシナリオにおけるクライアントの不均一性に対処する。より具体的には、まずクライアント間の類似性を学び、次に重み付けされた協調データアグリゲーションを開発する。
いくつかのよく知られたデータセットに対する厳密な実験による実験結果は、PFL-GANの有効性を示している。
論文 参考訳(メタデータ) (2023-08-23T22:38:35Z) - Rethinking Client Drift in Federated Learning: A Logit Perspective [125.35844582366441]
フェデレートラーニング(FL)は、複数のクライアントが分散した方法で協調的に学習し、プライバシ保護を可能にする。
その結果,局所モデルとグローバルモデルとのロジット差は,モデルが継続的に更新されるにつれて増大することがわかった。
我々はFedCSDと呼ばれる新しいアルゴリズムを提案する。FedCSDは、ローカルモデルとグローバルモデルを調整するためのフェデレーションフレームワークにおけるクラスプロトタイプの類似度蒸留である。
論文 参考訳(メタデータ) (2023-08-20T04:41:01Z) - FedBug: A Bottom-Up Gradual Unfreezing Framework for Federated Learning [36.18217687935658]
Federated Learning(FL)は、複数のクライアントが共有モデルにコントリビュート可能な、協調的なトレーニングフレームワークを提供する。
ローカルデータセットの異種性のため、更新されたクライアントモデルは、クライアントドリフトの問題として知られる、互いにオーバーフィットし、分岐する可能性がある。
クライアントのドリフトを効果的に軽減する新しいFLフレームワークであるFedBugを提案する。
論文 参考訳(メタデータ) (2023-07-19T05:44:35Z) - Fair Differentially Private Federated Learning Framework [0.0]
Federated Learning(FL)は、参加者が個々のデータセットを共有することなく、協力し、共有モデルをトレーニングすることのできる、分散機械学習戦略である。
FLではプライバシと公平性が重要な考慮事項である。
本稿では、検証データなしで公正なグローバルモデルを作成し、グローバルなプライベートディファレンシャルモデルを作成するという課題に対処する枠組みを提案する。
論文 参考訳(メタデータ) (2023-05-23T09:58:48Z) - Federated Nearest Neighbor Machine Translation [66.8765098651988]
本稿では,FedNN(FedNN)機械翻訳フレームワークを提案する。
FedNNは1ラウンドの記憶に基づくインタラクションを活用して、異なるクライアント間で知識を共有する。
実験の結果,FedAvgと比較して,FedNNは計算コストと通信コストを著しく削減することがわかった。
論文 参考訳(メタデータ) (2023-02-23T18:04:07Z) - Scalable Collaborative Learning via Representation Sharing [53.047460465980144]
フェデレートラーニング(FL)とスプリットラーニング(SL)は、データを(デバイス上で)プライベートにしながら協調学習を可能にする2つのフレームワークである。
FLでは、各データ保持者がモデルをローカルにトレーニングし、集約のために中央サーバにリリースする。
SLでは、クライアントは個々のカット層アクティベーション(スマッシュされたデータ)をサーバにリリースし、そのレスポンス(推論とバックの伝搬の両方)を待つ必要があります。
本研究では, クライアントがオンライン知識蒸留を通じて, 対照的な損失を生かして協調する, プライバシ保護機械学習の新しいアプローチを提案する。
論文 参考訳(メタデータ) (2022-11-20T10:49:22Z) - Personalized Retrogress-Resilient Framework for Real-World Medical
Federated Learning [8.240098954377794]
本稿では,各クライアントに対して優れたパーソナライズモデルを生成するために,パーソナライズされた回帰耐性フレームワークを提案する。
実世界の皮膚内視鏡的FLデータセットに関する実験により、我々のパーソナライズされた回帰抵抗性フレームワークが最先端のFL手法より優れていることが証明された。
論文 参考訳(メタデータ) (2021-10-01T13:24:29Z) - Personalized Federated Learning with Moreau Envelopes [16.25105865597947]
フェデレートラーニング(Federated Learning, FL)は、分散されたプライバシ保護機械学習技術である。
FLに関連する課題の1つは、クライアント間の統計的多様性である。
封筒正規化損失関数を用いたパーソナライズFL(FedFedMe)のアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-06-16T00:55:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。