論文の概要: Privacy-preserving gradient-based fair federated learning
- arxiv url: http://arxiv.org/abs/2407.13881v1
- Date: Thu, 18 Jul 2024 19:56:39 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-22 19:32:58.915391
- Title: Privacy-preserving gradient-based fair federated learning
- Title(参考訳): プライバシー保護グラデーションに基づくフェアフェデレーション学習
- Authors: Janis Adamek, Moritz Schulze Darup,
- Abstract要約: フェデレートラーニング(FL)スキームは、複数の参加者が基盤となるデータを共有することなく、ニューラルネットワークを協調的にトレーニングすることを可能にする。
本稿では,本研究の成果に基づいて,新しい,公正かつプライバシ保護のFLスキームを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Federated learning (FL) schemes allow multiple participants to collaboratively train neural networks without the need to directly share the underlying data.However, in early schemes, all participants eventually obtain the same model. Moreover, the aggregation is typically carried out by a third party, who obtains combined gradients or weights, which may reveal the model. These downsides underscore the demand for fair and privacy-preserving FL schemes. Here, collaborative fairness asks for individual model quality depending on the individual data contribution. Privacy is demanded with respect to any kind of data outsourced to the third party. Now, there already exist some approaches aiming for either fair or privacy-preserving FL and a few works even address both features. In our paper, we build upon these seminal works and present a novel, fair and privacy-preserving FL scheme. Our approach, which mainly relies on homomorphic encryption, stands out for exclusively using local gradients. This increases the usability in comparison to state-of-the-art approaches and thereby opens the door to applications in control.
- Abstract(参考訳): フェデレートラーニング(FL)スキームでは、複数の参加者が、基盤となるデータを直接共有することなく、複数の参加者が協力的にニューラルネットワークを訓練することができる。
さらに、アグリゲーションは典型的には第三者によって実行され、結合した勾配や重みが得られ、モデルを明らかにする可能性がある。
これらの欠点は、公正かつプライバシー保護のFLスキームの需要を浮き彫りにしている。
ここで、コラボレーティブフェアネスは、個々のデータコントリビューションに応じて、個々のモデルの品質を求めます。
プライバシーは、サードパーティにアウトソースされたあらゆる種類のデータに対して要求される。
現在、フェアあるいはプライバシ保護のFLを目指すアプローチがすでに存在しており、両方の機能に対処する作業もいくつかある。
本稿では,これらの基礎研究に基づいて,新しい,公正かつプライバシ保護のFLスキームを提案する。
提案手法は, 主に同相暗号に依存しており, 局所勾配のみを用いることが特徴である。
これにより、最先端のアプローチと比較してユーザビリティが向上し、制御対象のアプリケーションへの扉が開きます。
関連論文リスト
- Immersion and Invariance-based Coding for Privacy-Preserving Federated Learning [1.4226399196408985]
協調分散学習におけるプライバシ保護手法として,フェデレートラーニング(FL)が登場している。
制御理論から差分プライバシーとシステム浸漬ツールを組み合わせたプライバシー保護FLフレームワークを提案する。
提案手法は,局所モデルパラメータとグローバルモデルパラメータの両方に対して,任意のレベルの差分プライバシを提供するように調整可能であることを実証する。
論文 参考訳(メタデータ) (2024-09-25T15:04:42Z) - Federated Learning Empowered by Generative Content [55.576885852501775]
フェデレートラーニング(FL)は、プライバシ保護方法でモデルのトレーニングに分散プライベートデータを活用可能にする。
本稿では,FedGCと呼ばれる新しいFLフレームワークを提案する。
我々は、さまざまなベースライン、データセット、シナリオ、モダリティをカバーする、FedGCに関する体系的な実証的研究を行う。
論文 参考訳(メタデータ) (2023-12-10T07:38:56Z) - Tunable Soft Prompts are Messengers in Federated Learning [55.924749085481544]
フェデレートラーニング(FL)は、複数の参加者が分散データソースを使用して機械学習モデルを協調的にトレーニングすることを可能にする。
FLにおけるモデルプライバシ保護の欠如は無視できない課題となっている。
そこで本研究では,ソフトプロンプトによって参加者間の情報交換を実現する新しいFLトレーニング手法を提案する。
論文 参考訳(メタデータ) (2023-11-12T11:01:10Z) - Fair Differentially Private Federated Learning Framework [0.0]
Federated Learning(FL)は、参加者が個々のデータセットを共有することなく、協力し、共有モデルをトレーニングすることのできる、分散機械学習戦略である。
FLではプライバシと公平性が重要な考慮事項である。
本稿では、検証データなしで公正なグローバルモデルを作成し、グローバルなプライベートディファレンシャルモデルを作成するという課題に対処する枠組みを提案する。
論文 参考訳(メタデータ) (2023-05-23T09:58:48Z) - FedLAP-DP: Federated Learning by Sharing Differentially Private Loss Approximations [53.268801169075836]
我々は,フェデレーション学習のための新しいプライバシ保護手法であるFedLAP-DPを提案する。
公式なプライバシー分析は、FedLAP-DPが典型的な勾配共有方式と同じプライバシーコストを発生させることを示している。
提案手法は, 通常の勾配共有法に比べて高速な収束速度を示す。
論文 参考訳(メタデータ) (2023-02-02T12:56:46Z) - Social-Aware Clustered Federated Learning with Customized Privacy Preservation [38.00035804720786]
本稿では,ソーシャル・アウェア・クラスタ・フェデレーション・ラーニングの新たな手法を提案する。
モデル更新をソーシャルグループに混ぜ合わせることで、敵はソーシャル層を組み合わせた結果のみを盗むことができるが、個人のプライバシーを盗むことはできない。
FacebookネットワークとMNIST/CIFAR-10データセットの実験は、SCFLが学習ユーティリティを効果的に強化し、ユーザの支払いを改善し、カスタマイズ可能なプライバシ保護を強制できることを検証する。
論文 参考訳(メタデータ) (2022-12-25T10:16:36Z) - FairVFL: A Fair Vertical Federated Learning Framework with Contrastive
Adversarial Learning [102.92349569788028]
本稿では,VFLモデルの公平性を改善するために,FairVFL( Fair vertical federated learning framework)を提案する。
FairVFLの中核となる考え方は、分散化された機能フィールドに基づいたサンプルの統一的で公正な表現を、プライバシ保護の方法で学習することである。
ユーザのプライバシ保護のために,サーバ内の統一表現からプライベート情報を除去する対向学習手法を提案する。
論文 参考訳(メタデータ) (2022-06-07T11:43:32Z) - Understanding Clipping for Federated Learning: Convergence and
Client-Level Differential Privacy [67.4471689755097]
本稿では, 切断したFedAvgが, 実質的なデータ均一性でも驚くほど良好に動作できることを実証的に示す。
本稿では,差分プライベート(DP)FedAvgアルゴリズムの収束解析を行い,クリッピングバイアスとクライアント更新の分布との関係を明らかにする。
論文 参考訳(メタデータ) (2021-06-25T14:47:19Z) - Privacy Assessment of Federated Learning using Private Personalized
Layers [0.9023847175654603]
Federated Learning(FL)は、データを共有することなく、複数の参加者にまたがって学習モデルをトレーニングするコラボレーティブスキームである。
プライベートなパーソナライズされたレイヤを用いてFLスキームの実用性とプライバシのトレードオフを定量化する。
論文 参考訳(メタデータ) (2021-06-15T11:40:16Z) - Voting-based Approaches For Differentially Private Federated Learning [87.2255217230752]
この研究はPapernotらによる非フェデレーションプライバシ学習の知識伝達にインスパイアされている。
我々は,各局所モデルから返されるデータラベル間で投票を行うことで,勾配を平均化する代わりに2つの新しいDPFLスキームを設計する。
我々のアプローチはDPFLの最先端技術に対するプライバシーとユーティリティのトレードオフを大幅に改善します。
論文 参考訳(メタデータ) (2020-10-09T23:55:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。