Embracing New Techniques in Deep Learning for Estimating Image
Memorability
- URL: http://arxiv.org/abs/2105.10598v1
- Date: Fri, 21 May 2021 23:05:23 GMT
- Title: Embracing New Techniques in Deep Learning for Estimating Image
Memorability
- Authors: Coen D. Needell and Wilma A. Bainbridge
- Abstract summary: We propose and evaluate five alternative deep learning models to predict image memorability.
Our findings suggest that the key prior memorability network had overstated its generalizability and was overfit on its training set.
We make our new state-of-the-art model readily available to the research community, allowing memory researchers to make predictions about memorability on a wider range of images.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Various work has suggested that the memorability of an image is consistent
across people, and thus can be treated as an intrinsic property of an image.
Using computer vision models, we can make specific predictions about what
people will remember or forget. While older work has used now-outdated deep
learning architectures to predict image memorability, innovations in the field
have given us new techniques to apply to this problem. Here, we propose and
evaluate five alternative deep learning models which exploit developments in
the field from the last five years, largely the introduction of residual neural
networks, which are intended to allow the model to use semantic information in
the memorability estimation process. These new models were tested against the
prior state of the art with a combined dataset built to optimize both
within-category and across-category predictions. Our findings suggest that the
key prior memorability network had overstated its generalizability and was
overfit on its training set. Our new models outperform this prior model,
leading us to conclude that Residual Networks outperform simpler convolutional
neural networks in memorability regression. We make our new state-of-the-art
model readily available to the research community, allowing memory researchers
to make predictions about memorability on a wider range of images.
Related papers
- Restyling Unsupervised Concept Based Interpretable Networks with Generative Models [14.604305230535026]
We propose a novel method that relies on mapping the concept features to the latent space of a pretrained generative model.
We quantitatively ascertain the efficacy of our method in terms of accuracy of the interpretable prediction network, fidelity of reconstruction, as well as faithfulness and consistency of learnt concepts.
arXiv Detail & Related papers (2024-07-01T14:39:41Z) - Reinforcing Pre-trained Models Using Counterfactual Images [54.26310919385808]
This paper proposes a novel framework to reinforce classification models using language-guided generated counterfactual images.
We identify model weaknesses by testing the model using the counterfactual image dataset.
We employ the counterfactual images as an augmented dataset to fine-tune and reinforce the classification model.
arXiv Detail & Related papers (2024-06-19T08:07:14Z) - Towards Scalable and Versatile Weight Space Learning [51.78426981947659]
This paper introduces the SANE approach to weight-space learning.
Our method extends the idea of hyper-representations towards sequential processing of subsets of neural network weights.
arXiv Detail & Related papers (2024-06-14T13:12:07Z) - Visual Prompting Upgrades Neural Network Sparsification: A Data-Model Perspective [64.04617968947697]
We introduce a novel data-model co-design perspective: to promote superior weight sparsity.
Specifically, customized Visual Prompts are mounted to upgrade neural Network sparsification in our proposed VPNs framework.
arXiv Detail & Related papers (2023-12-03T13:50:24Z) - TexPose: Neural Texture Learning for Self-Supervised 6D Object Pose
Estimation [55.94900327396771]
We introduce neural texture learning for 6D object pose estimation from synthetic data.
We learn to predict realistic texture of objects from real image collections.
We learn pose estimation from pixel-perfect synthetic data.
arXiv Detail & Related papers (2022-12-25T13:36:32Z) - Towards Learning a Vocabulary of Visual Concepts and Operators using
Deep Neural Networks [0.0]
We analyze the learned feature maps of trained models using MNIST images for achieving more explainable predictions.
We illustrate the idea by generating visual concepts from a Variational Autoencoder trained using MNIST images.
We were able to reduce the reconstruction loss (mean square error) from an initial value of 120 without augmentation to 60 with augmentation.
arXiv Detail & Related papers (2021-09-01T16:34:57Z) - Understanding invariance via feedforward inversion of discriminatively
trained classifiers [30.23199531528357]
Past research has discovered that some extraneous visual detail remains in the output logits.
We develop a feedforward inversion model that produces remarkably high fidelity reconstructions.
Our approach is based on BigGAN, with conditioning on logits instead of one-hot class labels.
arXiv Detail & Related papers (2021-03-15T17:56:06Z) - NAS-DIP: Learning Deep Image Prior with Neural Architecture Search [65.79109790446257]
Recent work has shown that the structure of deep convolutional neural networks can be used as a structured image prior.
We propose to search for neural architectures that capture stronger image priors.
We search for an improved network by leveraging an existing neural architecture search algorithm.
arXiv Detail & Related papers (2020-08-26T17:59:36Z) - Adversarially-Trained Deep Nets Transfer Better: Illustration on Image
Classification [53.735029033681435]
Transfer learning is a powerful methodology for adapting pre-trained deep neural networks on image recognition tasks to new domains.
In this work, we demonstrate that adversarially-trained models transfer better than non-adversarially-trained models.
arXiv Detail & Related papers (2020-07-11T22:48:42Z) - Multi-task pre-training of deep neural networks for digital pathology [8.74883469030132]
We first assemble and transform many digital pathology datasets into a pool of 22 classification tasks and almost 900k images.
We show that our models used as feature extractors either improve significantly over ImageNet pre-trained models or provide comparable performance.
arXiv Detail & Related papers (2020-05-05T08:50:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.