MIASSR: An Approach for Medical Image Arbitrary Scale Super-Resolution
- URL: http://arxiv.org/abs/2105.10738v1
- Date: Sat, 22 May 2021 14:24:25 GMT
- Title: MIASSR: An Approach for Medical Image Arbitrary Scale Super-Resolution
- Authors: Jin Zhu, Chuan Tan, Junwei Yang, Guang Yang and Pietro Lio'
- Abstract summary: Single image super-resolution aims to obtain a high-resolution output from one low-resolution image.
Deep learning-based SISR approaches have been widely discussed in medical image processing.
We propose an approach for medical image arbitrary-scale super-resolution (MIASSR)
- Score: 3.0554209431226624
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Single image super-resolution (SISR) aims to obtain a high-resolution output
from one low-resolution image. Currently, deep learning-based SISR approaches
have been widely discussed in medical image processing, because of their
potential to achieve high-quality, high spatial resolution images without the
cost of additional scans. However, most existing methods are designed for
scale-specific SR tasks and are unable to generalise over magnification scales.
In this paper, we propose an approach for medical image arbitrary-scale
super-resolution (MIASSR), in which we couple meta-learning with generative
adversarial networks (GANs) to super-resolve medical images at any scale of
magnification in (1, 4]. Compared to state-of-the-art SISR algorithms on
single-modal magnetic resonance (MR) brain images (OASIS-brains) and
multi-modal MR brain images (BraTS), MIASSR achieves comparable fidelity
performance and the best perceptual quality with the smallest model size. We
also employ transfer learning to enable MIASSR to tackle SR tasks of new
medical modalities, such as cardiac MR images (ACDC) and chest computed
tomography images (COVID-CT). The source code of our work is also public. Thus,
MIASSR has the potential to become a new foundational pre-/post-processing step
in clinical image analysis tasks such as reconstruction, image quality
enhancement, and segmentation.
Related papers
- Unifying Subsampling Pattern Variations for Compressed Sensing MRI with Neural Operators [72.79532467687427]
Compressed Sensing MRI reconstructs images of the body's internal anatomy from undersampled and compressed measurements.
Deep neural networks have shown great potential for reconstructing high-quality images from highly undersampled measurements.
We propose a unified model that is robust to different subsampling patterns and image resolutions in CS-MRI.
arXiv Detail & Related papers (2024-10-05T20:03:57Z) - Dual Arbitrary Scale Super-Resolution for Multi-Contrast MRI [23.50915512118989]
Multi-contrast Super-Resolution (SR) reconstruction is promising to yield SR images with higher quality.
radiologists are accustomed to zooming the MR images at arbitrary scales rather than using a fixed scale.
We propose an implicit neural representations based dual-arbitrary multi-contrast MRI super-resolution method, called Dual-ArbNet.
arXiv Detail & Related papers (2023-07-05T14:43:26Z) - Attention Hybrid Variational Net for Accelerated MRI Reconstruction [7.046523233290946]
The application of compressed sensing (CS)-enabled data reconstruction for accelerating magnetic resonance imaging (MRI) remains a challenging problem.
This is due to the fact that the information lost in k-space from the acceleration mask makes it difficult to reconstruct an image similar to the quality of a fully sampled image.
We propose a deep learning-based attention hybrid variational network that performs learning in both the k-space and image domain.
arXiv Detail & Related papers (2023-06-21T16:19:07Z) - Model-Guided Multi-Contrast Deep Unfolding Network for MRI
Super-resolution Reconstruction [68.80715727288514]
We show how to unfold an iterative MGDUN algorithm into a novel model-guided deep unfolding network by taking the MRI observation matrix.
In this paper, we propose a novel Model-Guided interpretable Deep Unfolding Network (MGDUN) for medical image SR reconstruction.
arXiv Detail & Related papers (2022-09-15T03:58:30Z) - Single MR Image Super-Resolution using Generative Adversarial Network [0.696125353550498]
Real Enhanced Super Resolution Generative Adrial Network (Real-ESRGAN) is one of the recent effective approaches utilized to produce higher resolution images.
In this paper, we apply this method to enhance the spatial resolution of 2D MR images.
arXiv Detail & Related papers (2022-07-16T23:15:10Z) - Transformer-empowered Multi-scale Contextual Matching and Aggregation
for Multi-contrast MRI Super-resolution [55.52779466954026]
Multi-contrast super-resolution (SR) reconstruction is promising to yield SR images with higher quality.
Existing methods lack effective mechanisms to match and fuse these features for better reconstruction.
We propose a novel network to address these problems by developing a set of innovative Transformer-empowered multi-scale contextual matching and aggregation techniques.
arXiv Detail & Related papers (2022-03-26T01:42:59Z) - Multi-modal Aggregation Network for Fast MR Imaging [85.25000133194762]
We propose a novel Multi-modal Aggregation Network, named MANet, which is capable of discovering complementary representations from a fully sampled auxiliary modality.
In our MANet, the representations from the fully sampled auxiliary and undersampled target modalities are learned independently through a specific network.
Our MANet follows a hybrid domain learning framework, which allows it to simultaneously recover the frequency signal in the $k$-space domain.
arXiv Detail & Related papers (2021-10-15T13:16:59Z) - Adaptive Gradient Balancing for UndersampledMRI Reconstruction and
Image-to-Image Translation [60.663499381212425]
We enhance the image quality by using a Wasserstein Generative Adversarial Network combined with a novel Adaptive Gradient Balancing technique.
In MRI, our method minimizes artifacts, while maintaining a high-quality reconstruction that produces sharper images than other techniques.
arXiv Detail & Related papers (2021-04-05T13:05:22Z) - ShuffleUNet: Super resolution of diffusion-weighted MRIs using deep
learning [47.68307909984442]
Single Image Super-Resolution (SISR) is a technique aimed to obtain high-resolution (HR) details from one single low-resolution input image.
Deep learning extracts prior knowledge from big datasets and produces superior MRI images from the low-resolution counterparts.
arXiv Detail & Related papers (2021-02-25T14:52:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.