論文の概要: OntoED: Low-resource Event Detection with Ontology Embedding
- arxiv url: http://arxiv.org/abs/2105.10922v3
- Date: Thu, 27 May 2021 15:11:37 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-06 09:50:40.964463
- Title: OntoED: Low-resource Event Detection with Ontology Embedding
- Title(参考訳): ontoed:オントロジー埋め込みによる低リソースイベント検出
- Authors: Shumin Deng, Ningyu Zhang, Luoqiu Li, Hui Chen, Huaixiao Tou, Mosha
Chen, Fei Huang, Huajun Chen
- Abstract要約: イベント検出(ED)は、所定のテキストからイベントトリガーワードを特定し、イベントタイプに分類することを目的としている。
EDへの現在のメソッドのほとんどは、トレーニングインスタンスに大きく依存しており、イベントタイプの相関をほとんど無視しています。
- 参考スコア(独自算出の注目度): 19.126410765996077
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Event Detection (ED) aims to identify event trigger words from a given text
and classify it into an event type. Most of current methods to ED rely heavily
on training instances, and almost ignore the correlation of event types. Hence,
they tend to suffer from data scarcity and fail to handle new unseen event
types. To address these problems, we formulate ED as a process of event
ontology population: linking event instances to pre-defined event types in
event ontology, and propose a novel ED framework entitled OntoED with ontology
embedding. We enrich event ontology with linkages among event types, and
further induce more event-event correlations. Based on the event ontology,
OntoED can leverage and propagate correlation knowledge, particularly from
data-rich to data-poor event types. Furthermore, OntoED can be applied to new
unseen event types, by establishing linkages to existing ones. Experiments
indicate that OntoED is more predominant and robust than previous approaches to
ED, especially in data-scarce scenarios.
- Abstract(参考訳): イベント検出(ED)は、所定のテキストからイベントトリガーワードを特定し、イベントタイプに分類することを目的としている。
EDへの現在のメソッドのほとんどは、トレーニングインスタンスに大きく依存しており、イベントタイプの相関をほとんど無視しています。
したがって、データ不足に苦しむ傾向があり、新しい未発見のイベントタイプには対処できない。
これらの問題に対処するため,イベントオントロジー集団のプロセスとしてEDを定式化し,イベントインスタンスをイベントオントロジーで事前に定義されたイベントタイプにリンクし,オントロジーを組み込んだ新しいEDフレームワークを提案する。
イベントオントロジーをイベントタイプ間のリンクで強化し、さらにイベント-イベント相関を誘導する。
イベントオントロジーに基づいて、ontedは相関知識、特にデータリッチからデータポーアなイベントタイプを活用し、伝播することができる。
さらに oned は,既存のイベントへのリンクを確立することで,新たな未認識のイベントタイプにも適用可能だ。
実験によると、OntoEDは従来のEDアプローチよりも支配的であり、堅牢である。
関連論文リスト
- Improving Event Definition Following For Zero-Shot Event Detection [66.27883872707523]
ゼロショットイベント検出に対する既存のアプローチは通常、既知のイベントタイプをアノテートしたデータセット上でモデルをトレーニングする。
イベント定義に従うためのトレーニングモデルによるゼロショットイベント検出の改善を目指しています。
論文 参考訳(メタデータ) (2024-03-05T01:46:50Z) - Continual Event Extraction with Semantic Confusion Rectification [50.59450741139265]
本研究では, 連続イベント抽出法について検討し, 忘れることを避けつつ, 間欠的に出現するイベント情報を抽出することを目的とした。
イベントタイプに関するセマンティックな混乱は、時間とともに更新される同じテキストのアノテーションに由来することを観察する。
本稿では,意味的混乱を是正した新しい連続イベント抽出モデルを提案する。
論文 参考訳(メタデータ) (2023-10-24T02:48:50Z) - Event Causality Extraction with Event Argument Correlations [13.403222002600558]
Event Causality extractは、プレーンテキストから因果関係のイベント因果関係のペアを抽出することを目的としている。
本稿では,ECE の時間内および時間内引数相関を捉えるための二重グリッドタギング方式を提案する。
論文 参考訳(メタデータ) (2023-01-27T09:48:31Z) - Trigger-free Event Detection via Derangement Reading Comprehension [4.728684358207039]
イベント検出は、テキストからイベントを検出し、それらを分類することを目的としている。
本稿では,機械読み取り(DRC)フレームワーク上での分散機構によるトリガフリーED手法を提案する。
提案するトリガフリーEDモデルは,主流のトリガベースモデルと極めて競合することを示す。
論文 参考訳(メタデータ) (2022-08-20T11:01:39Z) - Unifying Event Detection and Captioning as Sequence Generation via
Pre-Training [53.613265415703815]
本稿では,イベント検出とキャプションのタスク間関連性を高めるための,事前学習と微調整の統合フレームワークを提案する。
我々のモデルは最先端の手法よりも優れており、大規模ビデオテキストデータによる事前学習ではさらに向上できる。
論文 参考訳(メタデータ) (2022-07-18T14:18:13Z) - PILED: An Identify-and-Localize Framework for Few-Shot Event Detection [79.66042333016478]
本研究では,事前学習した言語モデルから事象関連知識を引き出すために,クローゼプロンプトを用いた。
型固有のパラメータの数を最小化し、新しい型に対するイベント検出タスクに迅速に適応できるようにします。
論文 参考訳(メタデータ) (2022-02-15T18:01:39Z) - Adaptive Knowledge-Enhanced Bayesian Meta-Learning for Few-shot Event
Detection [34.0901494858203]
イベント検出(ED)は、文中のイベントトリガーワードを検出し、それらを特定のイベントタイプに分類することを目的としている。
本稿では,外部イベント知識を導入するために,定義に基づくエンコーダを用いた知識ベース少ショットイベント検出手法を提案する。
実験により、我々の手法は、少なくとも15個の絶対F1点の基準線を連続的に、実質的に上回っていることが示された。
論文 参考訳(メタデータ) (2021-05-20T04:26:26Z) - Unsupervised Label-aware Event Trigger and Argument Classification [73.86358632937372]
まず,利用可能なツール(srlなど)でイベントを識別し,それを事前に定義されたイベントタイプに自動マップする,教師なしイベント抽出パイプラインを提案する。
事前訓練された言語モデルを利用して、イベントトリガと引数の両方の事前定義された型を文脈的に表現します。
我々は、トリガーの83%と引数の54%を正しい型にマッピングし、以前のゼロショットアプローチのパフォーマンスをほぼ倍にしました。
論文 参考訳(メタデータ) (2020-12-30T17:47:24Z) - MAVEN: A Massive General Domain Event Detection Dataset [56.00401399384715]
イベント検出(ED)は、プレーンテキストからイベント知識を抽出する最初の、最も基本的なステップである。
既存のデータセットは、EDのさらなる開発を制限する問題を示す。
我々は,4,480のウィキペディア文書,118,732のイベント参照インスタンス,168のイベントタイプを含むMAVEN(Massive eVENt detection dataset)を提案する。
論文 参考訳(メタデータ) (2020-04-28T15:25:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。