Heuristic Weakly Supervised 3D Human Pose Estimation
- URL: http://arxiv.org/abs/2105.10996v3
- Date: Fri, 12 May 2023 15:31:17 GMT
- Title: Heuristic Weakly Supervised 3D Human Pose Estimation
- Authors: Shuangjun Liu, Michael Wan, and Sarah Ostadabbas
- Abstract summary: weakly supervised 3D human pose (HW-HuP) solution to estimate 3D poses in when no ground truth 3D pose data is available.
We show that HW-HuP meaningfully improves upon state-of-the-art models in two practical settings where 3D pose data can hardly be obtained: human poses in bed, and infant poses in the wild.
- Score: 13.82540778667711
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Monocular 3D human pose estimation from RGB images has attracted significant
attention in recent years. However, recent models depend on supervised training
with 3D pose ground truth data or known pose priors for their target domains.
3D pose data is typically collected with motion capture devices, severely
limiting their applicability. In this paper, we present a heuristic weakly
supervised 3D human pose (HW-HuP) solution to estimate 3D poses in when no
ground truth 3D pose data is available. HW-HuP learns partial pose priors from
3D human pose datasets and uses easy-to-access observations from the target
domain to estimate 3D human pose and shape in an optimization and regression
cycle. We employ depth data for weak supervision during training, but not
inference. We show that HW-HuP meaningfully improves upon state-of-the-art
models in two practical settings where 3D pose data can hardly be obtained:
human poses in bed, and infant poses in the wild. Furthermore, we show that
HW-HuP retains comparable performance to cutting-edge models on public
benchmarks, even when such models train on 3D pose data.
Related papers
- GLA-GCN: Global-local Adaptive Graph Convolutional Network for 3D Human
Pose Estimation from Monocular Video [33.801470193414325]
This work focuses on improving 3D human pose lifting via ground truth data.
Global-local Adaptive Graph Convolutional Network (GLA-GCN) is proposed in this work.
Our GLA-GCN implemented with ground truth 2D poses significantly outperforms state-of-the-art methods.
arXiv Detail & Related papers (2023-07-12T00:13:04Z) - MPM: A Unified 2D-3D Human Pose Representation via Masked Pose Modeling [59.74064212110042]
mpmcan handle multiple tasks including 3D human pose estimation, 3D pose estimation from cluded 2D pose, and 3D pose completion in a textocbfsingle framework.
We conduct extensive experiments and ablation studies on several widely used human pose datasets and achieve state-of-the-art performance on MPI-INF-3DHP.
arXiv Detail & Related papers (2023-06-29T10:30:00Z) - Decanus to Legatus: Synthetic training for 2D-3D human pose lifting [26.108023246654646]
We propose an algorithm to generate infinite 3D synthetic human poses (Legatus) from a 3D pose distribution based on 10 initial handcrafted 3D poses (Decanus)
Our results show that we can achieve 3D pose estimation performance comparable to methods using real data from specialized datasets but in a zero-shot setup, showing the potential of our framework.
arXiv Detail & Related papers (2022-10-05T13:10:19Z) - PoseGU: 3D Human Pose Estimation with Novel Human Pose Generator and
Unbiased Learning [36.609189237732394]
3D pose estimation has recently gained substantial interests in computer vision domain.
Existing 3D pose estimation methods have a strong reliance on large size well-annotated 3D pose datasets.
We propose PoseGU, a novel human pose generator that generates diverse poses with access only to a small size of seed samples.
arXiv Detail & Related papers (2022-07-07T23:43:53Z) - PONet: Robust 3D Human Pose Estimation via Learning Orientations Only [116.1502793612437]
We propose a novel Pose Orientation Net (PONet) that is able to robustly estimate 3D pose by learning orientations only.
PONet estimates the 3D orientation of these limbs by taking advantage of the local image evidence to recover the 3D pose.
We evaluate our method on multiple datasets, including Human3.6M, MPII, MPI-INF-3DHP, and 3DPW.
arXiv Detail & Related papers (2021-12-21T12:48:48Z) - ElePose: Unsupervised 3D Human Pose Estimation by Predicting Camera
Elevation and Learning Normalizing Flows on 2D Poses [23.554957518485324]
We propose an unsupervised approach that learns to predict a 3D human pose from a single image.
We estimate the 3D pose that is most likely over random projections, with the likelihood estimated using normalizing flows on 2D poses.
We outperform the state-of-the-art unsupervised human pose estimation methods on the benchmark datasets Human3.6M and MPI-INF-3DHP in many metrics.
arXiv Detail & Related papers (2021-12-14T01:12:45Z) - Adapted Human Pose: Monocular 3D Human Pose Estimation with Zero Real 3D
Pose Data [14.719976311208502]
Training vs. test data domain gaps often negatively affect model performance.
We present our adapted human pose (AHuP) approach that addresses adaptation problems in both appearance and pose spaces.
AHuP is built around a practical assumption that in real applications, data from target domain could be inaccessible or only limited information can be acquired.
arXiv Detail & Related papers (2021-05-23T01:20:40Z) - Cascaded deep monocular 3D human pose estimation with evolutionary
training data [76.3478675752847]
Deep representation learning has achieved remarkable accuracy for monocular 3D human pose estimation.
This paper proposes a novel data augmentation method that is scalable for massive amount of training data.
Our method synthesizes unseen 3D human skeletons based on a hierarchical human representation and synthesizings inspired by prior knowledge.
arXiv Detail & Related papers (2020-06-14T03:09:52Z) - Towards Generalization of 3D Human Pose Estimation In The Wild [73.19542580408971]
3DBodyTex.Pose is a dataset that addresses the task of 3D human pose estimation in-the-wild.
3DBodyTex.Pose offers high quality and rich data containing 405 different real subjects in various clothing and poses, and 81k image samples with ground-truth 2D and 3D pose annotations.
arXiv Detail & Related papers (2020-04-21T13:31:58Z) - Self-Supervised 3D Human Pose Estimation via Part Guided Novel Image
Synthesis [72.34794624243281]
We propose a self-supervised learning framework to disentangle variations from unlabeled video frames.
Our differentiable formalization, bridging the representation gap between the 3D pose and spatial part maps, allows us to operate on videos with diverse camera movements.
arXiv Detail & Related papers (2020-04-09T07:55:01Z) - Exemplar Fine-Tuning for 3D Human Model Fitting Towards In-the-Wild 3D
Human Pose Estimation [107.07047303858664]
Large-scale human datasets with 3D ground-truth annotations are difficult to obtain in the wild.
We address this problem by augmenting existing 2D datasets with high-quality 3D pose fits.
The resulting annotations are sufficient to train from scratch 3D pose regressor networks that outperform the current state-of-the-art on in-the-wild benchmarks.
arXiv Detail & Related papers (2020-04-07T20:21:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.