論文の概要: Room Clearance with Feudal Hierarchical Reinforcement Learning
- arxiv url: http://arxiv.org/abs/2105.11328v1
- Date: Mon, 24 May 2021 15:05:58 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-25 15:29:17.693137
- Title: Room Clearance with Feudal Hierarchical Reinforcement Learning
- Title(参考訳): 封建階層強化学習によるルームクリアランス
- Authors: Henry Charlesworth, Adrian Millea, Eddie Pottrill, Rich Riley
- Abstract要約: 本稿では,RL研究を軍事分析に有用な方向に進めるためのシナリオ構築ツールとして,新しいシミュレーション環境「it」を紹介した。
そこでは、青いエージェントのチームが建物を通り抜け、すべての部屋が敵のレッドエージェントから取り除かれるようにしなければなりません。
封建的階層型RLのマルチエージェント版を実装し、より上位の指揮官が命令を下級の複数のエージェントに送信するコマンド階層を導入する。
このような方法でタスクを壊すことで、私たちはそれを可能にすることに気付きました。
- 参考スコア(独自算出の注目度): 2.867517731896504
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Reinforcement learning (RL) is a general framework that allows systems to
learn autonomously through trial-and-error interaction with their environment.
In recent years combining RL with expressive, high-capacity neural network
models has led to impressive performance in a diverse range of domains.
However, dealing with the large state and action spaces often required for
problems in the real world still remains a significant challenge. In this paper
we introduce a new simulation environment, "Gambit", designed as a tool to
build scenarios that can drive RL research in a direction useful for military
analysis. Using this environment we focus on an abstracted and simplified room
clearance scenario, where a team of blue agents have to make their way through
a building and ensure that all rooms are cleared of (and remain clear) of enemy
red agents. We implement a multi-agent version of feudal hierarchical RL that
introduces a command hierarchy where a commander at the higher level sends
orders to multiple agents at the lower level who simply have to learn to follow
these orders. We find that breaking the task down in this way allows us to
solve a number of non-trivial floorplans that require the coordination of
multiple agents much more efficiently than the standard baseline RL algorithms
we compare with. We then go on to explore how qualitatively different behaviour
can emerge depending on what we prioritise in the agent's reward function (e.g.
clearing the building quickly vs. prioritising rescuing civilians).
- Abstract(参考訳): 強化学習(rl)は、システムと環境との試行錯誤による自律的な学習を可能にする汎用フレームワークである。
近年、RLと表現力のある高容量ニューラルネットワークモデルを組み合わせることで、さまざまな領域で顕著なパフォーマンスを実現している。
しかし、実世界の問題にしばしば必要とされる大きな状態と行動空間を扱うことは依然として大きな課題である。
本稿では,rl研究を軍事分析に有用な方向に進めるためのシナリオを構築するためのツールとして,新たなシミュレーション環境「ギャンビット」を提案する。
この環境を使用することで、ブルーエージェントのチームが建物を通り抜け、すべての部屋が敵のレッドエージェントから切り離され(そして明確に保たれる)なければならない、抽象的で単純化されたルームクリアランスシナリオに焦点をあてます。
我々は,階層型階層型rlのマルチエージェント版を実装し,上位レベルの指揮官が命令に従うために単に学習しなければならない下位レベルの複数のエージェントに命令を送るコマンド階層を導入する。
この方法でタスクを分解することで、比較した標準的なベースラインRLアルゴリズムよりもはるかに効率的に複数のエージェントの調整を必要とする多くの非自明なフロアプランを解決できることがわかった。
次に、エージェントの報酬関数(例えば、エージェントの報酬関数)の優先順位によって、定性的に異なる振る舞いがどのように現れるかを探る。
素早く建物を片付け 民の救済を優先して)
関連論文リスト
- Mastering the Digital Art of War: Developing Intelligent Combat Simulation Agents for Wargaming Using Hierarchical Reinforcement Learning [0.0]
対象とする観察抽象化、マルチモデル統合、ハイブリッドAIフレームワーク、階層的な強化学習フレームワークなど、包括的なアプローチを提案する。
線形空間減衰を用いた局所的な観測抽象化は,RL問題を単純化し,計算効率を向上し,従来の大域的観測法よりも優れた有効性を示す。
我々のハイブリッドAIフレームワークは、スクリプトエージェントとRLを同期させ、高レベルの決定にRLを、低レベルのタスクにスクリプトエージェントを活用し、適応性、信頼性、パフォーマンスを向上させる。
論文 参考訳(メタデータ) (2024-08-23T18:50:57Z) - ArCHer: Training Language Model Agents via Hierarchical Multi-Turn RL [80.10358123795946]
大規模言語モデルを微調整するためのマルチターンRLアルゴリズムを構築するためのフレームワークを開発する。
我々のフレームワークは階層的なRLアプローチを採用し、2つのRLアルゴリズムを並列に実行している。
実験により,ArCHerはエージェントタスクの効率と性能を大幅に向上させることがわかった。
論文 参考訳(メタデータ) (2024-02-29T18:45:56Z) - MASP: Scalable GNN-based Planning for Multi-Agent Navigation [17.788592987873905]
エージェント数の多いナビゲーションタスクのための目標条件付き階層型プランナを提案する。
また、グラフニューラルネットワーク(GNN)を活用し、エージェントと目標間の相互作用をモデル化し、目標達成を改善する。
その結果、MASPは古典的な計画ベースの競合やRLベースラインよりも優れていた。
論文 参考訳(メタデータ) (2023-12-05T06:05:04Z) - AI planning in the imagination: High-level planning on learned abstract
search spaces [68.75684174531962]
我々は,エージェントが訓練中に学習する抽象的な検索空間において,エージェントが計画することを可能にする,PiZeroと呼ばれる新しい手法を提案する。
本研究では,旅行セールスマン問題,ソコバン問題,2048年,施設立地問題,パックマン問題など,複数の分野で評価を行った。
論文 参考訳(メタデータ) (2023-08-16T22:47:16Z) - Mastering the Unsupervised Reinforcement Learning Benchmark from Pixels [112.63440666617494]
強化学習アルゴリズムは成功するが、エージェントと環境の間の大量の相互作用を必要とする。
本稿では,教師なしモデルベースRLを用いてエージェントを事前学習する手法を提案する。
我々はReal-Word RLベンチマークにおいて、適応中の環境摂動に対する抵抗性を示唆し、堅牢な性能を示す。
論文 参考訳(メタデータ) (2022-09-24T14:22:29Z) - Hierarchical Reinforcement Learning with Opponent Modeling for
Distributed Multi-agent Cooperation [13.670618752160594]
深層強化学習(DRL)はエージェントと環境の相互作用を通じて多エージェント協調に有望なアプローチを提供する。
従来のDRLソリューションは、ポリシー探索中に連続的なアクション空間を持つ複数のエージェントの高次元に悩まされる。
効率的な政策探索のための高レベル意思決定と低レベル個別制御を用いた階層型強化学習手法を提案する。
論文 参考訳(メタデータ) (2022-06-25T19:09:29Z) - Environment Generation for Zero-Shot Compositional Reinforcement
Learning [105.35258025210862]
環境構成設計(CoDE)は、ジェネレータエージェントを訓練し、エージェントの現在のスキルレベルに合わせて一連の構成タスクを自動的に構築する。
我々は,複数のページや部屋からなる環境を生成することを学び,それらの環境において複雑なタスクを広範囲にこなせるRLエージェントを訓練する。
CoDEは最強のベースラインよりも4倍高い成功率を示し、3500のプリミティブタスクで学んだ実際のWebサイトのパフォーマンスを示している。
論文 参考訳(メタデータ) (2022-01-21T21:35:01Z) - On the Use and Misuse of Absorbing States in Multi-agent Reinforcement
Learning [55.95253619768565]
現在のMARLアルゴリズムは、実験を通してグループ内のエージェントの数が固定されていると仮定している。
多くの実践的な問題において、エージェントはチームメイトの前に終了する可能性がある。
本稿では,吸収状態を持つ完全連結層ではなく,注意を用いた既存の最先端MARLアルゴリズムのアーキテクチャを提案する。
論文 参考訳(メタデータ) (2021-11-10T23:45:08Z) - Decentralized Cooperative Multi-Agent Reinforcement Learning with
Exploration [35.75029940279768]
マルコフチーム(Markov team)において、最も基本的な協調環境でマルチエージェント強化学習を研究する。
本稿では,各エージェントが独立してステージベースのVラーニングスタイルのアルゴリズムを実行するアルゴリズムを提案する。
エージェントは、少なくとも$proptowidetildeO (1/epsilon4)$ episodesにおいて、$epsilon$-approximate Nash平衡ポリシーを学ぶことができる。
論文 参考訳(メタデータ) (2021-10-12T02:45:12Z) - Continuous Coordination As a Realistic Scenario for Lifelong Learning [6.044372319762058]
ゼロショット設定と少数ショット設定の両方をサポートするマルチエージェント生涯学習テストベッドを導入する。
最近のMARL法、および制限メモリおよび計算における最新のLLLアルゴリズムのベンチマークを評価します。
我々は経験的に、我々の設定で訓練されたエージェントは、以前の作業による追加の仮定なしに、未発見のエージェントとうまく協調できることを示します。
論文 参考訳(メタデータ) (2021-03-04T18:44:03Z) - Forgetful Experience Replay in Hierarchical Reinforcement Learning from
Demonstrations [55.41644538483948]
本稿では,複雑な視覚環境において,エージェントが低品質な実演を行えるようにするためのアプローチの組み合わせを提案する。
提案した目標指向のリプレイバッファ構築により,エージェントはデモにおいて複雑な階層的タスクを解くためのサブゴールを自動的に強調することができる。
私たちのアルゴリズムに基づくこのソリューションは、有名なMineRLコンペティションのすべてのソリューションを破り、エージェントがMinecraft環境でダイヤモンドをマイニングすることを可能にする。
論文 参考訳(メタデータ) (2020-06-17T15:38:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。