論文の概要: 3D-Aware Ellipse Prediction for Object-Based Camera Pose Estimation
- arxiv url: http://arxiv.org/abs/2105.11494v1
- Date: Mon, 24 May 2021 18:40:18 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-27 07:05:40.024552
- Title: 3D-Aware Ellipse Prediction for Object-Based Camera Pose Estimation
- Title(参考訳): オブジェクトベースカメラポーズ推定のための3次元認識楕円予測
- Authors: Matthieu Zins, Gilles Simon, Marie-Odile Berger
- Abstract要約: 視聴条件に頑健な粗いカメラポーズ計算法を提案する。
観察条件に関係なく、物体を確実に検出する深層学習技術を活用する。
- 参考スコア(独自算出の注目度): 3.103806775802078
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we propose a method for coarse camera pose computation which
is robust to viewing conditions and does not require a detailed model of the
scene. This method meets the growing need of easy deployment of robotics or
augmented reality applications in any environments, especially those for which
no accurate 3D model nor huge amount of ground truth data are available. It
exploits the ability of deep learning techniques to reliably detect objects
regardless of viewing conditions. Previous works have also shown that
abstracting the geometry of a scene of objects by an ellipsoid cloud allows to
compute the camera pose accurately enough for various application needs. Though
promising, these approaches use the ellipses fitted to the detection bounding
boxes as an approximation of the imaged objects. In this paper, we go one step
further and propose a learning-based method which detects improved elliptic
approximations of objects which are coherent with the 3D ellipsoid in terms of
perspective projection. Experiments prove that the accuracy of the computed
pose significantly increases thanks to our method and is more robust to the
variability of the boundaries of the detection boxes. This is achieved with
very little effort in terms of training data acquisition -- a few hundred
calibrated images of which only three need manual object annotation. Code and
models are released at
https://github.com/zinsmatt/3D-Aware-Ellipses-for-Visual-Localization.
- Abstract(参考訳): 本稿では,視聴条件に頑健で,シーンの詳細なモデルを必要としない粗いカメラポーズ計算手法を提案する。
この方法は、ロボット工学や拡張現実のアプリケーションをあらゆる環境、特に正確な3dモデルや膨大な真実データがない環境で簡単に展開することの必要性が増している。
観察条件に関係なく、物体を確実に検出する深層学習技術を活用する。
以前の研究では、楕円雲によってオブジェクトのシーンの幾何学を抽象化することで、様々なアプリケーションのニーズに十分正確にカメラのポーズを計算できることを示した。
これらの手法は有望ではあるが、画像オブジェクトの近似として検出境界ボックスに取り付けられた楕円を用いている。
本稿では、さらに一歩進んで、3次元楕円体と直交する物体の楕円近似を視点投影の観点から検出する学習法を提案する。
実験により,提案手法により計算結果の精度が著しく向上し,検出ボックスの境界のばらつきに対してより堅牢であることが確認された。
これは、データ取得のトレーニングという観点で、非常に少ない労力で達成されます -- 数百のキャリブレーションされた画像のうち、手動のオブジェクトアノテーションが必要なのは3つだけです。
コードとモデルはhttps://github.com/zinsmatt/3D-Aware-Ellipses-for-Visual-Localizationで公開されている。
関連論文リスト
- LocaliseBot: Multi-view 3D object localisation with differentiable
rendering for robot grasping [9.690844449175948]
オブジェクトのポーズ推定に重点を置いています。
このアプローチは,オブジェクトの複数ビュー,それらの視点におけるカメラのパラメータ,オブジェクトの3次元CADモデルという3つの情報に依存している。
推定対象のポーズが99.65%の精度で真理把握候補を把握できることが示される。
論文 参考訳(メタデータ) (2023-11-14T14:27:53Z) - FrozenRecon: Pose-free 3D Scene Reconstruction with Frozen Depth Models [67.96827539201071]
本稿では,3次元シーン再構成のための新しいテスト時間最適化手法を提案する。
本手法は5つのゼロショットテストデータセット上で,最先端のクロスデータセット再構築を実現する。
論文 参考訳(メタデータ) (2023-08-10T17:55:02Z) - ShapeShift: Superquadric-based Object Pose Estimation for Robotic
Grasping [85.38689479346276]
現在の技術は参照3Dオブジェクトに大きく依存しており、その一般化性を制限し、新しいオブジェクトカテゴリに拡張するのにコストがかかる。
本稿では,オブジェクトに適合するプリミティブな形状に対してオブジェクトのポーズを予測する,オブジェクトのポーズ推定のためのスーパークワッドリックベースのフレームワークであるShapeShiftを提案する。
論文 参考訳(メタデータ) (2023-04-10T20:55:41Z) - 6D Object Pose Estimation from Approximate 3D Models for Orbital
Robotics [19.64111218032901]
単一画像から物体の6次元ポーズを推定する新しい手法を提案する。
画素毎に3次元モデル座標を回帰する高密度な2次元から3次元対応予測器を用いる。
提案手法は,SPEED+データセット上での最先端性能を実現し,SPEC2021ポストモーテムコンペティションで優勝した。
論文 参考訳(メタデータ) (2023-03-23T13:18:05Z) - Unseen Object 6D Pose Estimation: A Benchmark and Baselines [62.8809734237213]
本稿では,新しい物体の6次元ポーズ推定をアルゴリズムで行えるようにするための新しいタスクを提案する。
実画像と合成画像の両方でデータセットを収集し、テストセットで最大48個の未確認オブジェクトを収集する。
エンド・ツー・エンドの3D対応ネットワークをトレーニングすることにより、未確認物体と部分ビューRGBD画像との対応点を高精度かつ効率的に見つけることができる。
論文 参考訳(メタデータ) (2022-06-23T16:29:53Z) - Object-Based Visual Camera Pose Estimation From Ellipsoidal Model and
3D-Aware Ellipse Prediction [2.016317500787292]
本稿では,1枚の画像から初期カメラのポーズ推定を行う手法を提案する。
観察条件に関係なく、物体を確実に検出する深層学習技術を活用する。
実験により,提案手法により計算結果の精度が著しく向上することが確認された。
論文 参考訳(メタデータ) (2022-03-09T10:00:52Z) - Learning Stereopsis from Geometric Synthesis for 6D Object Pose
Estimation [11.999630902627864]
現在のモノクラーベース6Dオブジェクトポーズ推定法は、一般的にRGBDベースの手法よりも競争力の低い結果が得られる。
本稿では,短いベースライン2ビュー設定による3次元幾何体積に基づくポーズ推定手法を提案する。
実験により,本手法は最先端の単分子法よりも優れ,異なる物体やシーンにおいて堅牢であることが示された。
論文 参考訳(メタデータ) (2021-09-25T02:55:05Z) - 3D Object Detection and Pose Estimation of Unseen Objects in Color
Images with Local Surface Embeddings [35.769234123059086]
本研究では, 画像中のオブジェクトの3次元ポーズを, テクスチャのないCADモデルでのみ検出し, 推定する手法を提案する。
我々のアプローチはディープラーニングと3D幾何を組み合わせており、CADモデルと入力画像とを一致させるために、局所的な3D幾何の埋め込みに依存している。
我々は,Mask-RCNNをクラスに依存しない方法で,再学習せずに新しい物体を検出できることを示す。
論文 参考訳(メタデータ) (2020-10-08T15:57:06Z) - Shape and Viewpoint without Keypoints [63.26977130704171]
本研究では,1枚の画像から3次元形状,ポーズ,テクスチャを復元する学習フレームワークを提案する。
我々は,3次元形状,マルチビュー,カメラ視点,キーポイントの監督なしに画像収集を訓練した。
我々は、最先端のカメラ予測結果を取得し、オブジェクト間の多様な形状やテクスチャを予測することを学べることを示す。
論文 参考訳(メタデータ) (2020-07-21T17:58:28Z) - Single View Metrology in the Wild [94.7005246862618]
本研究では,物体の3次元の高さや地上のカメラの高さで表現されるシーンの絶対的なスケールを再現する,単一ビューメロジに対する新しいアプローチを提案する。
本手法は,被写体の高さなどの3Dエンティティによる未知のカメラとの相互作用から,弱い教師付き制約を抑えるために設計されたディープネットワークによって学習されたデータ駆動の先行情報に依存する。
いくつかのデータセットと仮想オブジェクト挿入を含むアプリケーションに対して、最先端の定性的かつ定量的な結果を示す。
論文 参考訳(メタデータ) (2020-07-18T22:31:33Z) - Lightweight Multi-View 3D Pose Estimation through Camera-Disentangled
Representation [57.11299763566534]
空間校正カメラで撮影した多視点画像から3次元ポーズを復元する手法を提案する。
我々は3次元形状を利用して、入力画像をカメラ視点から切り離したポーズの潜在表現に融合する。
アーキテクチャは、カメラプロジェクション演算子に学習した表現を条件付け、ビュー当たりの正確な2次元検出を生成する。
論文 参考訳(メタデータ) (2020-04-05T12:52:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。