論文の概要: Learning Stereopsis from Geometric Synthesis for 6D Object Pose
Estimation
- arxiv url: http://arxiv.org/abs/2109.12266v1
- Date: Sat, 25 Sep 2021 02:55:05 GMT
- ステータス: 処理完了
- システム内更新日: 2021-09-28 15:49:43.073745
- Title: Learning Stereopsis from Geometric Synthesis for 6D Object Pose
Estimation
- Title(参考訳): 幾何学的合成から学ぶ6次元オブジェクトポス推定
- Authors: Jun Wu, Lilu Liu, Yue Wang and Rong Xiong
- Abstract要約: 現在のモノクラーベース6Dオブジェクトポーズ推定法は、一般的にRGBDベースの手法よりも競争力の低い結果が得られる。
本稿では,短いベースライン2ビュー設定による3次元幾何体積に基づくポーズ推定手法を提案する。
実験により,本手法は最先端の単分子法よりも優れ,異なる物体やシーンにおいて堅牢であることが示された。
- 参考スコア(独自算出の注目度): 11.999630902627864
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Current monocular-based 6D object pose estimation methods generally achieve
less competitive results than RGBD-based methods, mostly due to the lack of 3D
information. To make up this gap, this paper proposes a 3D geometric volume
based pose estimation method with a short baseline two-view setting. By
constructing a geometric volume in the 3D space, we combine the features from
two adjacent images to the same 3D space. Then a network is trained to learn
the distribution of the position of object keypoints in the volume, and a
robust soft RANSAC solver is deployed to solve the pose in closed form. To
balance accuracy and cost, we propose a coarse-to-fine framework to improve the
performance in an iterative way. The experiments show that our method
outperforms state-of-the-art monocular-based methods, and is robust in
different objects and scenes, especially in serious occlusion situations.
- Abstract(参考訳): 現在のモノクラーベース6Dオブジェクトポーズ推定法は、通常、RGBDベースの手法よりも競争力の低い結果が得られる。
そこで本稿では,このギャップを埋めるために,短いベースライン2視点設定による3次元幾何ボリュームに基づくポーズ推定手法を提案する。
3次元空間に幾何学的ボリュームを構築することにより、隣接する2つの画像から同じ3次元空間に特徴を結合する。
次に、ネットワークを訓練して、ボリューム内のオブジェクトキーポイントの位置の分布を学習し、堅牢なソフトRANSACソルバを配置して、ポーズをクローズドな形で解決する。
精度とコストのバランスをとるため,反復的に性能を向上する粗大なフレームワークを提案する。
実験の結果,本手法は最先端のモノクロ法よりも優れており,特に重篤な閉塞状況において,異なる物体や場面で堅牢であることがわかった。
関連論文リスト
- PF3plat: Pose-Free Feed-Forward 3D Gaussian Splatting [54.7468067660037]
PF3platは、設計選択を検証した包括的なアブレーション研究によってサポートされた、すべてのベンチマークに新しい最先端を設定します。
本フレームワークは,3DGSの高速,スケーラビリティ,高品質な3D再構成とビュー合成機能を活用している。
論文 参考訳(メタデータ) (2024-10-29T15:28:15Z) - Towards Scalable Multi-View Reconstruction of Geometry and Materials [27.660389147094715]
本稿では,3次元シーンのカメラポーズ,オブジェクト形状,空間変化の両方向反射分布関数(svBRDF)のジョイントリカバリ手法を提案する。
入力は高解像度のRGBD画像であり、アクティブ照明用の点灯付き携帯型ハンドヘルドキャプチャシステムによってキャプチャされる。
論文 参考訳(メタデータ) (2023-06-06T15:07:39Z) - LFM-3D: Learnable Feature Matching Across Wide Baselines Using 3D
Signals [9.201550006194994]
学習可能なマーカは、画像ペア間のコビジュアビリティの小さな領域だけが存在する場合、しばしば性能が低下する。
グラフニューラルネットワークに基づくモデルを用いた学習可能な特徴マッチングフレームワーク LFM-3D を提案する。
その結果,画像対の相対的ポーズ精度が向上し,画像対の相対的ポーズ精度が向上することがわかった。
論文 参考訳(メタデータ) (2023-03-22T17:46:27Z) - ShAPO: Implicit Representations for Multi-Object Shape, Appearance, and
Pose Optimization [40.36229450208817]
SAPO, 関節多物体検出法, 3次元テクスチャ再構築法, 6次元オブジェクトポーズ法, サイズ推定法を提案する。
ShAPOのキーはシングルショットのパイプラインで、各オブジェクトインスタンスのマスクとともに、形状、外観、遅延コードのポーズをレグレッションする。
提案手法は,NOCSデータセット上でのベースライン全体の性能を,6次元ポーズ推定におけるmAPの8%の絶対的な改善で著しく向上させる。
論文 参考訳(メタデータ) (2022-07-27T17:59:31Z) - Towards Two-view 6D Object Pose Estimation: A Comparative Study on
Fusion Strategy [16.65699606802237]
現在のRGBベースの6Dオブジェクトポーズ推定手法は、データセットや実世界のアプリケーションで顕著なパフォーマンスを達成した。
本稿では2枚のRGB画像から暗黙的な3D情報を学習する6次元オブジェクトポーズ推定フレームワークを提案する。
論文 参考訳(メタデータ) (2022-07-01T08:22:34Z) - Coupled Iterative Refinement for 6D Multi-Object Pose Estimation [64.7198752089041]
既知の3DオブジェクトのセットとRGBまたはRGB-Dの入力画像から、各オブジェクトの6Dポーズを検出して推定する。
我々のアプローチは、ポーズと対応を緊密に結合した方法で反復的に洗練し、アウトレーヤを動的に除去して精度を向上させる。
論文 参考訳(メタデータ) (2022-04-26T18:00:08Z) - SO-Pose: Exploiting Self-Occlusion for Direct 6D Pose Estimation [98.83762558394345]
SO-Poseは、オブジェクトの6自由度(6DoF)をすべて、単一のRGBイメージから散らばった環境でポーズさせるフレームワークである。
本稿では,3次元オブジェクトの2層表現を確立するために,自己閉塞に関する新たな推論を導入する。
対応性,自己閉塞性,6次元ポーズを整列する層間合成により,精度とロバスト性をさらに向上させることができる。
論文 参考訳(メタデータ) (2021-08-18T19:49:29Z) - Learning Geometry-Guided Depth via Projective Modeling for Monocular 3D Object Detection [70.71934539556916]
射影モデルを用いて幾何学誘導深度推定を学習し, モノクル3次元物体検出を推し進める。
具体的には,モノクロ3次元物体検出ネットワークにおける2次元および3次元深度予測の投影モデルを用いた原理的幾何式を考案した。
本手法は, 適度なテスト設定において, 余分なデータを2.80%も加えることなく, 最先端単分子法の検出性能を著しく向上させる。
論文 参考訳(メタデータ) (2021-07-29T12:30:39Z) - Reinforced Axial Refinement Network for Monocular 3D Object Detection [160.34246529816085]
モノクロ3次元物体検出は、2次元入力画像から物体の位置と特性を抽出することを目的としている。
従来のアプローチでは、空間から3D境界ボックスをサンプリングし、対象オブジェクトと各オブジェクトの関係を推定するが、有効サンプルの確率は3D空間で比較的小さい。
我々は,まず最初の予測から始めて,各ステップで1つの3dパラメータだけを変えて,基礎的真理に向けて徐々に洗練することを提案する。
これは、いくつかのステップの後に報酬を得るポリシーを設計する必要があるため、最適化するために強化学習を採用します。
論文 参考訳(メタデータ) (2020-08-31T17:10:48Z) - Lightweight Multi-View 3D Pose Estimation through Camera-Disentangled
Representation [57.11299763566534]
空間校正カメラで撮影した多視点画像から3次元ポーズを復元する手法を提案する。
我々は3次元形状を利用して、入力画像をカメラ視点から切り離したポーズの潜在表現に融合する。
アーキテクチャは、カメラプロジェクション演算子に学習した表現を条件付け、ビュー当たりの正確な2次元検出を生成する。
論文 参考訳(メタデータ) (2020-04-05T12:52:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。