論文の概要: KnowSR: Knowledge Sharing among Homogeneous Agents in Multi-agent
Reinforcement Learning
- arxiv url: http://arxiv.org/abs/2105.11611v1
- Date: Tue, 25 May 2021 02:19:41 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-26 14:24:05.449280
- Title: KnowSR: Knowledge Sharing among Homogeneous Agents in Multi-agent
Reinforcement Learning
- Title(参考訳): KnowSR:マルチエージェント強化学習における均質エージェント間の知識共有
- Authors: Zijian Gao, Kele Xu, Bo Ding, Huaimin Wang, Yiying Li, Hongda Jia
- Abstract要約: 本稿では,KnowSRと呼ばれるマルチエージェント強化学習(MARL)アルゴリズムの適応手法を提案する。
我々は、知識蒸留(KD)の概念を用いて、訓練フェーズを短縮するためにエージェント間で知識を共有する。
KnowSRの堅牢性と有効性を実証的に示すために,我々は,協調的・競合的なシナリオにおける最先端のMARLアルゴリズムの広範な実験を行った。
- 参考スコア(独自算出の注目度): 16.167201058368303
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, deep reinforcement learning (RL) algorithms have made great
progress in multi-agent domain. However, due to characteristics of RL, training
for complex tasks would be resource-intensive and time-consuming. To meet this
challenge, mutual learning strategy between homogeneous agents is essential,
which is under-explored in previous studies, because most existing methods do
not consider to use the knowledge of agent models. In this paper, we present an
adaptation method of the majority of multi-agent reinforcement learning (MARL)
algorithms called KnowSR which takes advantage of the differences in learning
between agents. We employ the idea of knowledge distillation (KD) to share
knowledge among agents to shorten the training phase. To empirically
demonstrate the robustness and effectiveness of KnowSR, we performed extensive
experiments on state-of-the-art MARL algorithms in collaborative and
competitive scenarios. The results demonstrate that KnowSR outperforms recently
reported methodologies, emphasizing the importance of the proposed knowledge
sharing for MARL.
- Abstract(参考訳): 近年, 深部強化学習(RL)アルゴリズムはマルチエージェント領域において大きな進歩を遂げている。
しかし、RLの特性のため、複雑なタスクのトレーニングはリソース集約的で時間を要する。
この課題に対処するためには,従来の手法ではエージェントモデルの知識の利用を考慮していないため,従来研究では未検討であった同質エージェント間の相互学習戦略が不可欠である。
本稿では,エージェント間の学習の差異を利用したマルチエージェント強化学習 (marl) アルゴリズムの大部分の適応法を提案する。
我々は,知識蒸留(kd)という概念を用いてエージェント間の知識共有を行い,学習段階を短縮する。
KnowSRの堅牢性と有効性を実証的に示すために,我々は,協調的・競合的なシナリオにおける最先端のMARLアルゴリズムの広範な実験を行った。
その結果,KnowSRが最近報告した方法論よりも優れており,MARLにおける知識共有の重要性を強調している。
関連論文リスト
- From Novice to Expert: LLM Agent Policy Optimization via Step-wise Reinforcement Learning [62.54484062185869]
本稿では,エージェントの強化学習プロセスの最適化にステップワイド報酬を利用するStepAgentを紹介する。
エージェント反射とポリシー調整を容易にする暗黙の逆・逆の強化学習手法を提案する。
論文 参考訳(メタデータ) (2024-11-06T10:35:11Z) - Multi-Agent Reinforcement Learning with a Hierarchy of Reward Machines [5.600971575680638]
Reward Machines (RMs) を用いた協調型マルチエージェント強化学習(MARL)問題の検討
より複雑なシナリオを扱えるRM(MAHRM)階層のマルチエージェント強化学習を提案する。
3つの協調MARLドメインの実験結果から、MAHRMは、他のMARLメソッドよりも高いレベルの事象の事前知識の方が優れていることが示された。
論文 参考訳(メタデータ) (2024-03-08T06:38:22Z) - Enabling Multi-Agent Transfer Reinforcement Learning via Scenario
Independent Representation [0.7366405857677227]
マルチエージェント強化学習(MARL)アルゴリズムは、エージェント間の協調や競合を必要とする複雑なタスクに広く採用されている。
本稿では,様々な状態空間を固定サイズの入力に統一することで,MARLの伝達学習を可能にする新しいフレームワークを提案する。
スクラッチから学習するエージェントと比較して,他のシナリオから学んだ操作スキルを用いたマルチエージェント学習性能の大幅な向上を示す。
論文 参考訳(メタデータ) (2024-02-13T02:48:18Z) - On Diagnostics for Understanding Agent Training Behaviour in Cooperative
MARL [5.124364759305485]
我々は、経験的リターンのみに依存することは、エージェントの振る舞いに不明瞭な重要な洞察を与えるかもしれないと論じる。
本稿では,エージェントの動作に対する深い洞察を得るために,説明可能なAI(XAI)ツールの適用について検討する。
論文 参考訳(メタデータ) (2023-12-13T19:10:10Z) - MA2CL:Masked Attentive Contrastive Learning for Multi-Agent
Reinforcement Learning [128.19212716007794]
我々はtextbfMulti-textbfAgent textbfMasked textbfAttentive textbfContrastive textbfLearning (MA2CL) という効果的なフレームワークを提案する。
MA2CLは、潜伏空間におけるマスクされたエージェント観察を再構築することにより、時間的およびエージェントレベルの予測の両方の学習表現を奨励する。
提案手法は,様々なMARLアルゴリズムの性能とサンプル効率を大幅に向上させ,様々な視覚的,状態的シナリオにおいて,他の手法よりも優れる。
論文 参考訳(メタデータ) (2023-06-03T05:32:19Z) - Learning Reward Machines in Cooperative Multi-Agent Tasks [75.79805204646428]
本稿では,MARL(Multi-Agent Reinforcement Learning)に対する新しいアプローチを提案する。
これは、協調的なタスク分解と、サブタスクの構造をコードする報酬機(RM)の学習を組み合わせる。
提案手法は、部分的に観測可能な環境下での報酬の非マルコフ的性質に対処するのに役立つ。
論文 参考訳(メタデータ) (2023-03-24T15:12:28Z) - Celebrating Diversity in Shared Multi-Agent Reinforcement Learning [20.901606233349177]
深層多エージェント強化学習は、複雑な協調的な課題を解決することを約束している。
本稿では,共有型マルチエージェント強化学習の最適化と表現に多様性を導入することを目的とする。
提案手法は,Google Research Footballと超硬度StarCraft IIマイクロマネジメントタスクにおける最先端性能を実現する。
論文 参考訳(メタデータ) (2021-06-04T00:55:03Z) - What is Going on Inside Recurrent Meta Reinforcement Learning Agents? [63.58053355357644]
recurrent meta reinforcement learning (meta-rl)エージェントは「学習アルゴリズムの学習」を目的としてrecurrent neural network (rnn)を使用するエージェントである。
部分観測可能なマルコフ決定プロセス(POMDP)フレームワークを用いてメタRL問題を再構成することにより,これらのエージェントの内部動作機構を明らかにする。
論文 参考訳(メタデータ) (2021-04-29T20:34:39Z) - KnowRU: Knowledge Reusing via Knowledge Distillation in Multi-agent
Reinforcement Learning [16.167201058368303]
深層強化学習(RL)アルゴリズムはマルチエージェント領域において劇的に進歩している。
この問題を解決するには、歴史的経験の効率的な活用が不可欠です。
知識再利用のための「KnowRU」という手法を提案する。
論文 参考訳(メタデータ) (2021-03-27T12:38:01Z) - Softmax with Regularization: Better Value Estimation in Multi-Agent
Reinforcement Learning [72.28520951105207]
q$-learningの過大評価は、シングルエージェント強化学習で広く研究されている重要な問題である。
ベースラインから逸脱する大きな関節動作値をペナライズする,新たな正規化ベースの更新方式を提案する。
本手法は,StarCraft IIマイクロマネジメントの課題に対して,一貫した性能向上を実現する。
論文 参考訳(メタデータ) (2021-03-22T14:18:39Z) - Scalable Multi-Agent Inverse Reinforcement Learning via
Actor-Attention-Critic [54.2180984002807]
マルチエージェント逆逆強化学習 (MA-AIRL) は, 単エージェントAIRLをマルチエージェント問題に適用する最近の手法である。
本稿では,従来の手法よりもサンプル効率が高く,スケーラブルなマルチエージェント逆RLアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-02-24T20:30:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。