GraphFM: Graph Factorization Machines for Feature Interaction Modeling
- URL: http://arxiv.org/abs/2105.11866v4
- Date: Mon, 1 Apr 2024 03:36:20 GMT
- Title: GraphFM: Graph Factorization Machines for Feature Interaction Modeling
- Authors: Shu Wu, Zekun Li, Yunyue Su, Zeyu Cui, Xiaoyu Zhang, Liang Wang,
- Abstract summary: We propose a novel approach, Graph Factorization Machine (GraphFM), by naturally representing features in the graph structure.
In particular, we design a mechanism to select the beneficial feature interactions and formulate them as edges between features.
The proposed model integrates the interaction function of FM into the feature aggregation strategy of Graph Neural Network (GNN)
- Score: 27.307086868266012
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Factorization machine (FM) is a prevalent approach to modeling pairwise (second-order) feature interactions when dealing with high-dimensional sparse data. However, on the one hand, FM fails to capture higher-order feature interactions suffering from combinatorial expansion. On the other hand, taking into account interactions between every pair of features may introduce noise and degrade prediction accuracy. To solve the problems, we propose a novel approach, Graph Factorization Machine (GraphFM), by naturally representing features in the graph structure. In particular, we design a mechanism to select the beneficial feature interactions and formulate them as edges between features. Then the proposed model, which integrates the interaction function of FM into the feature aggregation strategy of Graph Neural Network (GNN), can model arbitrary-order feature interactions on the graph-structured features by stacking layers. Experimental results on several real-world datasets have demonstrated the rationality and effectiveness of our proposed approach. The code and data are available at \href{https://github.com/CRIPAC-DIG/GraphCTR}{https://github.com/CRIPAC-DIG/GraphCTR}.
Related papers
- TouchUp-G: Improving Feature Representation through Graph-Centric
Finetuning [37.318961625795204]
Graph Neural Networks (GNNs) have become the state-of-the-art approach for many high-impact, real-world graph applications.
For feature-rich graphs, a prevalent practice involves utilizing a PM directly to generate features.
This practice is suboptimal because the node features extracted from PM are graph-agnostic and prevent GNNs from fully utilizing the potential correlations between the graph structure and node features.
arXiv Detail & Related papers (2023-09-25T05:44:40Z) - GrannGAN: Graph annotation generative adversarial networks [72.66289932625742]
We consider the problem of modelling high-dimensional distributions and generating new examples of data with complex relational feature structure coherent with a graph skeleton.
The model we propose tackles the problem of generating the data features constrained by the specific graph structure of each data point by splitting the task into two phases.
In the first it models the distribution of features associated with the nodes of the given graph, in the second it complements the edge features conditionally on the node features.
arXiv Detail & Related papers (2022-12-01T11:49:07Z) - Dynamic Graph Message Passing Networks for Visual Recognition [112.49513303433606]
Modelling long-range dependencies is critical for scene understanding tasks in computer vision.
A fully-connected graph is beneficial for such modelling, but its computational overhead is prohibitive.
We propose a dynamic graph message passing network, that significantly reduces the computational complexity.
arXiv Detail & Related papers (2022-09-20T14:41:37Z) - Cell Attention Networks [25.72671436731666]
We introduce Cell Attention Networks (CANs), a neural architecture operating on data defined over the vertices of a graph.
CANs exploit the lower and upper neighborhoods, as encoded in the cell complex, to design two independent masked self-attention mechanisms.
The experimental results show that CAN is a low complexity strategy that compares favorably with state of the art results on graph-based learning tasks.
arXiv Detail & Related papers (2022-09-16T21:57:39Z) - Graph Ordering Attention Networks [22.468776559433614]
Graph Neural Networks (GNNs) have been successfully used in many problems involving graph-structured data.
We introduce the Graph Ordering Attention (GOAT) layer, a novel GNN component that captures interactions between nodes in a neighborhood.
GOAT layer demonstrates its increased performance in modeling graph metrics that capture complex information.
arXiv Detail & Related papers (2022-04-11T18:13:19Z) - Graph Kernel Neural Networks [53.91024360329517]
We propose to use graph kernels, i.e. kernel functions that compute an inner product on graphs, to extend the standard convolution operator to the graph domain.
This allows us to define an entirely structural model that does not require computing the embedding of the input graph.
Our architecture allows to plug-in any type of graph kernels and has the added benefit of providing some interpretability.
arXiv Detail & Related papers (2021-12-14T14:48:08Z) - Explicit Pairwise Factorized Graph Neural Network for Semi-Supervised
Node Classification [59.06717774425588]
We propose the Explicit Pairwise Factorized Graph Neural Network (EPFGNN), which models the whole graph as a partially observed Markov Random Field.
It contains explicit pairwise factors to model output-output relations and uses a GNN backbone to model input-output relations.
We conduct experiments on various datasets, which shows that our model can effectively improve the performance for semi-supervised node classification on graphs.
arXiv Detail & Related papers (2021-07-27T19:47:53Z) - Scalable Graph Neural Networks for Heterogeneous Graphs [12.44278942365518]
Graph neural networks (GNNs) are a popular class of parametric model for learning over graph-structured data.
Recent work has argued that GNNs primarily use the graph for feature smoothing, and have shown competitive results on benchmark tasks.
In this work, we ask whether these results can be extended to heterogeneous graphs, which encode multiple types of relationship between different entities.
arXiv Detail & Related papers (2020-11-19T06:03:35Z) - Jointly Cross- and Self-Modal Graph Attention Network for Query-Based
Moment Localization [77.21951145754065]
We propose a novel Cross- and Self-Modal Graph Attention Network (CSMGAN) that recasts this task as a process of iterative messages passing over a joint graph.
Our CSMGAN is able to effectively capture high-order interactions between two modalities, thus enabling a further precise localization.
arXiv Detail & Related papers (2020-08-04T08:25:24Z) - Revisiting Graph based Collaborative Filtering: A Linear Residual Graph
Convolutional Network Approach [55.44107800525776]
Graph Convolutional Networks (GCNs) are state-of-the-art graph based representation learning models.
In this paper, we revisit GCN based Collaborative Filtering (CF) based Recommender Systems (RS)
We show that removing non-linearities would enhance recommendation performance, consistent with the theories in simple graph convolutional networks.
We propose a residual network structure that is specifically designed for CF with user-item interaction modeling.
arXiv Detail & Related papers (2020-01-28T04:41:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.