GraphTransfer: A Generic Feature Fusion Framework for Collaborative Filtering
- URL: http://arxiv.org/abs/2408.05792v1
- Date: Sun, 11 Aug 2024 14:47:34 GMT
- Title: GraphTransfer: A Generic Feature Fusion Framework for Collaborative Filtering
- Authors: Jiafeng Xia, Dongsheng Li, Hansu Gu, Tun Lu, Ning Gu,
- Abstract summary: We present GraphTransfer, a simple but universal feature fusion framework for GNN-based collaborative filtering.
Our method accurately fuses different types of features by first extracting graph features from the user-item interaction graph and auxiliary features from users and items using GNN.
Theoretical analysis and experiments on public datasets show that GraphTransfer outperforms other feature fusion methods in CF tasks.
- Score: 23.359028687426925
- License:
- Abstract: Graph Neural Networks (GNNs) have demonstrated effectiveness in collaborative filtering tasks due to their ability to extract powerful structural features. However, combining the graph features extracted from user-item interactions and auxiliary features extracted from user genres and item properties remains a challenge. Currently available fusion methods face two major issues: 1) simple methods such as concatenation and summation are generic, but not accurate in capturing feature relationships; 2) task-specific methods like attention mechanisms and meta paths may not be suitable for general feature fusion. To address these challenges, we present GraphTransfer, a simple but universal feature fusion framework for GNN-based collaborative filtering. Our method accurately fuses different types of features by first extracting graph features from the user-item interaction graph and auxiliary features from users and items using GCN. The proposed cross fusion module then effectively bridges the semantic gaps between the interaction scores of different features. Theoretical analysis and experiments on public datasets show that GraphTransfer outperforms other feature fusion methods in CF tasks. Additionally, we demonstrate the universality of our framework via empirical studies in three other scenarios, showing that GraphTransfer leads to significant improvements in the performance of CF algorithms.
Related papers
- Amplify Graph Learning for Recommendation via Sparsity Completion [16.32861024767423]
Graph learning models have been widely deployed in collaborative filtering (CF) based recommendation systems.
Due to the issue of data sparsity, the graph structure of the original input lacks potential positive preference edges.
We propose an Amplify Graph Learning framework based on Sparsity Completion (called AGL-SC)
arXiv Detail & Related papers (2024-06-27T08:26:20Z) - A Pure Transformer Pretraining Framework on Text-attributed Graphs [50.833130854272774]
We introduce a feature-centric pretraining perspective by treating graph structure as a prior.
Our framework, Graph Sequence Pretraining with Transformer (GSPT), samples node contexts through random walks.
GSPT can be easily adapted to both node classification and link prediction, demonstrating promising empirical success on various datasets.
arXiv Detail & Related papers (2024-06-19T22:30:08Z) - Learning a Graph Neural Network with Cross Modality Interaction for
Image Fusion [23.296468921842948]
Infrared and visible image fusion has gradually proved to be a vital fork in the field of multi-modality imaging technologies.
We propose an interactive graph neural network (GNN)-based architecture between cross modality for fusion, called IGNet.
Our IGNet can generate visually appealing fused images while scoring averagely 2.59% mAP@.5 and 7.77% mIoU higher in detection and segmentation.
arXiv Detail & Related papers (2023-08-07T02:25:06Z) - Challenging the Myth of Graph Collaborative Filtering: a Reasoned and Reproducibility-driven Analysis [50.972595036856035]
We present a code that successfully replicates results from six popular and recent graph recommendation models.
We compare these graph models with traditional collaborative filtering models that historically performed well in offline evaluations.
By investigating the information flow from users' neighborhoods, we aim to identify which models are influenced by intrinsic features in the dataset structure.
arXiv Detail & Related papers (2023-08-01T09:31:44Z) - A Simple and Scalable Graph Neural Network for Large Directed Graphs [11.792826520370774]
We investigate various combinations of node representations and edge direction awareness within an input graph.
In response, we propose a simple yet holistic classification method A2DUG.
We demonstrate that A2DUG stably performs well on various datasets and improves the accuracy up to 11.29 compared with the state-of-the-art methods.
arXiv Detail & Related papers (2023-06-14T06:24:58Z) - Training Free Graph Neural Networks for Graph Matching [103.45755859119035]
TFGM is a framework to boost the performance of Graph Neural Networks (GNNs) based graph matching without training.
Applying TFGM on various GNNs shows promising improvements over baselines.
arXiv Detail & Related papers (2022-01-14T09:04:46Z) - Joint Graph Learning and Matching for Semantic Feature Correspondence [69.71998282148762]
We propose a joint emphgraph learning and matching network, named GLAM, to explore reliable graph structures for boosting graph matching.
The proposed method is evaluated on three popular visual matching benchmarks (Pascal VOC, Willow Object and SPair-71k)
It outperforms previous state-of-the-art graph matching methods by significant margins on all benchmarks.
arXiv Detail & Related papers (2021-09-01T08:24:02Z) - GraphFM: Graph Factorization Machines for Feature Interaction Modeling [27.307086868266012]
We propose a novel approach, Graph Factorization Machine (GraphFM), by naturally representing features in the graph structure.
In particular, we design a mechanism to select the beneficial feature interactions and formulate them as edges between features.
The proposed model integrates the interaction function of FM into the feature aggregation strategy of Graph Neural Network (GNN)
arXiv Detail & Related papers (2021-05-25T12:10:54Z) - Learnable Graph Matching: Incorporating Graph Partitioning with Deep
Feature Learning for Multiple Object Tracking [58.30147362745852]
Data association across frames is at the core of Multiple Object Tracking (MOT) task.
Existing methods mostly ignore the context information among tracklets and intra-frame detections.
We propose a novel learnable graph matching method to address these issues.
arXiv Detail & Related papers (2021-03-30T08:58:45Z) - Deep Reinforcement Learning of Graph Matching [63.469961545293756]
Graph matching (GM) under node and pairwise constraints has been a building block in areas from optimization to computer vision.
We present a reinforcement learning solver for GM i.e. RGM that seeks the node correspondence between pairwise graphs.
Our method differs from the previous deep graph matching model in the sense that they are focused on the front-end feature extraction and affinity function learning.
arXiv Detail & Related papers (2020-12-16T13:48:48Z) - Improving Coreference Resolution by Leveraging Entity-Centric Features
with Graph Neural Networks and Second-order Inference [12.115691569576345]
Coreferent mentions usually spread far apart in an entire text, making it difficult to incorporate entity-level features.
We propose a graph neural network-based coreference resolution method that can capture the entity-centric information.
A global inference algorithm up to second-order features is also presented to optimally cluster mentions into consistent groups.
arXiv Detail & Related papers (2020-09-10T02:22:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.