論文の概要: Adversarial Attack Driven Data Augmentation for Accurate And Robust
Medical Image Segmentation
- arxiv url: http://arxiv.org/abs/2105.12106v1
- Date: Tue, 25 May 2021 17:44:19 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-26 15:45:17.166016
- Title: Adversarial Attack Driven Data Augmentation for Accurate And Robust
Medical Image Segmentation
- Title(参考訳): 高精度でロバストな医用画像分割のためのadversarial attack driven data augmentation
- Authors: Mst. Tasnim Pervin, Linmi Tao, Aminul Huq, Zuoxiang He, Li Huo
- Abstract要約: 本稿では,対戦型学習攻撃手法を導入することで,新たな拡張手法を提案する。
また、データ拡張のためのFGSMとは逆の方式で機能する逆FGSMの概念も導入した。
実験の総合的な分析は、頑健さの強化とともに、敵対的機械学習の新たな利用を示唆している。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Segmentation is considered to be a very crucial task in medical image
analysis. This task has been easier since deep learning models have taken over
with its high performing behavior. However, deep learning models dependency on
large data proves it to be an obstacle in medical image analysis because of
insufficient data samples. Several data augmentation techniques have been used
to mitigate this problem. We propose a new augmentation method by introducing
adversarial learning attack techniques, specifically Fast Gradient Sign Method
(FGSM). Furthermore, We have also introduced the concept of Inverse FGSM
(InvFGSM), which works in the opposite manner of FGSM for the data
augmentation. This two approaches worked together to improve the segmentation
accuracy, as well as helped the model to gain robustness against adversarial
attacks. The overall analysis of experiments indicates a novel use of
adversarial machine learning along with robustness enhancement.
- Abstract(参考訳): セグメンテーションは医用画像解析において非常に重要な課題であると考えられている。
このタスクは、ディープラーニングモデルがハイパフォーマンスな振る舞いを引き継いで以来、容易になっている。
しかし,大規模なデータに依存する深層学習モデルは,不十分なデータサンプルのため,医用画像解析の障害となる。
この問題を解決するために、いくつかのデータ拡張技術が使われている。
本稿では,FGSM(Fast Gradient Sign Method)という逆学習攻撃手法を導入することで,新たな拡張手法を提案する。
さらに,データ拡張のための逆FGSM(InvFGSM)の概念も導入した。
この2つのアプローチは、セグメンテーションの精度を向上させるために協力し、モデルが敵の攻撃に対して堅牢性を得るのを助けた。
実験の全体的分析は、ロバスト性向上とともに、新しい対向機械学習の使用を示している。
関連論文リスト
- On Evaluating Adversarial Robustness of Volumetric Medical Segmentation Models [59.45628259925441]
体積医学セグメンテーションモデルは、臓器および腫瘍ベースのセグメンテーションタスクにおいて大きな成功を収めた。
敵の攻撃に対するその脆弱性はほとんど解明されていない。
このことは、既存のモデルの堅牢性を調べることの重要性を浮き彫りにしている。
論文 参考訳(メタデータ) (2024-06-12T17:59:42Z) - Longitudinal detection of new MS lesions using Deep Learning [0.0]
新たなMS病変の検出・分節作業に対処するディープラーニングベースのパイプラインについて述べる。
まず,1つの時間点を用いたセグメンテーションタスクで訓練されたモデルからの移動学習を提案する。
第2に、新しい病変を伴う現実的な縦断時間を生成するためのデータ合成戦略を提案する。
論文 参考訳(メタデータ) (2022-06-16T16:09:04Z) - Improving robustness of jet tagging algorithms with adversarial training [56.79800815519762]
本研究では,フレーバータグ付けアルゴリズムの脆弱性について,敵攻撃による検証を行った。
シミュレーション攻撃の影響を緩和する対人訓練戦略を提案する。
論文 参考訳(メタデータ) (2022-03-25T19:57:19Z) - Augmentation based unsupervised domain adaptation [2.304713283039168]
小さく非表現的なデータに基づいてトレーニングされたディープラーニングモデルは、トレーニングに使用されるものと異なるデータにデプロイされた場合、パフォーマンスが向上する傾向があります。
本手法は, 対向領域適応と整合性トレーニングの特性を利用して, より堅牢な適応を実現する。
論文 参考訳(メタデータ) (2022-02-23T13:06:07Z) - Get your Foes Fooled: Proximal Gradient Split Learning for Defense
against Model Inversion Attacks on IoMT data [5.582293277542012]
本研究では,モデル反転攻撃に対する防御のための近勾配分割学習(PSGL)手法を提案する。
本稿では,勾配マップの復元に近似勾配法を用い,認識性能を向上させるための決定レベル融合戦略を提案する。
論文 参考訳(メタデータ) (2022-01-12T17:01:19Z) - Learning to Learn Transferable Attack [77.67399621530052]
転送逆行攻撃は非自明なブラックボックス逆行攻撃であり、サロゲートモデル上で敵の摂動を発生させ、そのような摂動を被害者モデルに適用することを目的としている。
本研究では,データとモデル拡張の両方から学習することで,敵の摂動をより一般化する学習可能な攻撃学習法(LLTA)を提案する。
提案手法の有効性を実証し, 現状の手法と比較して, 12.85%のトランスファー攻撃の成功率で検証した。
論文 参考訳(メタデータ) (2021-12-10T07:24:21Z) - An Uncertainty-Driven GCN Refinement Strategy for Organ Segmentation [53.425900196763756]
本研究では,不確実性解析とグラフ畳み込みネットワークに基づくセグメンテーション改善手法を提案する。
半教師付きグラフ学習問題を定式化するために、特定の入力ボリュームにおける畳み込みネットワークの不確実性レベルを用いる。
本手法は膵臓で1%,脾臓で2%向上し,最先端のCRF改善法よりも優れていた。
論文 参考訳(メタデータ) (2020-12-06T18:55:07Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
本研究は, 類似患者のサブグループを同定し, 数発の疾患のサブタイプ予測問題に焦点を当てた。
新しいモデルを開発するためにメタラーニング技術を導入し、関連する臨床課題から共通の経験や知識を抽出する。
我々の新しいモデルは、単純だが効果的なメタ学習マシンであるPrototypeal Networkと呼ばれる、慎重に設計されたメタラーナーに基づいて構築されている。
論文 参考訳(メタデータ) (2020-09-02T02:50:30Z) - Realistic Adversarial Data Augmentation for MR Image Segmentation [17.951034264146138]
医用画像セグメンテーションのためのニューラルネットワークのトレーニングのための逆データ拡張手法を提案する。
このモデルでは,MR画像における共通の種類のアーチファクトによって生じる強度不均一性,すなわちバイアス場をモデル化する。
このような手法により,モデルの一般化と堅牢性の向上が図られ,低データシナリオにおける大幅な改善が期待できる。
論文 参考訳(メタデータ) (2020-06-23T20:43:18Z) - Automatic Data Augmentation via Deep Reinforcement Learning for
Effective Kidney Tumor Segmentation [57.78765460295249]
医用画像セグメンテーションのための新しい学習ベースデータ拡張法を開発した。
本手法では,データ拡張モジュールと後続のセグメンテーションモジュールをエンドツーエンドのトレーニング方法で一貫した損失と,革新的に組み合わせる。
提案法の有効性を検証したCT腎腫瘍分節法について,本法を広範囲に評価した。
論文 参考訳(メタデータ) (2020-02-22T14:10:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。