論文の概要: Longitudinal detection of new MS lesions using Deep Learning
- arxiv url: http://arxiv.org/abs/2206.08272v1
- Date: Thu, 16 Jun 2022 16:09:04 GMT
- ステータス: 処理完了
- システム内更新日: 2022-06-17 20:27:59.158748
- Title: Longitudinal detection of new MS lesions using Deep Learning
- Title(参考訳): 深層学習による新しいms病変の経時的検出
- Authors: Reda Abdellah Kamraoui, Boris Mansencal, Jos\'e V Manjon, Pierrick
Coup\'e
- Abstract要約: 新たなMS病変の検出・分節作業に対処するディープラーニングベースのパイプラインについて述べる。
まず,1つの時間点を用いたセグメンテーションタスクで訓練されたモデルからの移動学習を提案する。
第2に、新しい病変を伴う現実的な縦断時間を生成するためのデータ合成戦略を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: The detection of new multiple sclerosis (MS) lesions is an important marker
of the evolution of the disease. The applicability of learning-based methods
could automate this task efficiently. However, the lack of annotated
longitudinal data with new-appearing lesions is a limiting factor for the
training of robust and generalizing models. In this work, we describe a
deep-learning-based pipeline addressing the challenging task of detecting and
segmenting new MS lesions. First, we propose to use transfer-learning from a
model trained on a segmentation task using single time-points. Therefore, we
exploit knowledge from an easier task and for which more annotated datasets are
available. Second, we propose a data synthesis strategy to generate realistic
longitudinal time-points with new lesions using single time-point scans. In
this way, we pretrain our detection model on large synthetic annotated
datasets. Finally, we use a data-augmentation technique designed to simulate
data diversity in MRI. By doing that, we increase the size of the available
small annotated longitudinal datasets. Our ablation study showed that each
contribution lead to an enhancement of the segmentation accuracy. Using the
proposed pipeline, we obtained the best score for the segmentation and the
detection of new MS lesions in the MSSEG2 MICCAI challenge.
- Abstract(参考訳): 新しい多発性硬化症(MS)病変の検出は、疾患の進化の重要な指標である。
学習に基づく手法の適用性は、このタスクを効率的に自動化することができる。
しかし,新たに出現する病変を伴う注釈付き長手データの欠如は,ロバストおよび一般化モデルの訓練の限界要因である。
本研究では,新たなMS病変の検出とセグメント化という課題に対処するディープラーニングベースのパイプラインについて述べる。
まず,1つの時間点を用いたセグメンテーションタスクで訓練されたモデルからの移動学習を提案する。
したがって、より簡単なタスクから知識を活用し、より多くの注釈付きデータセットが利用できる。
第2に,単点スキャンを用いて新しい病変を有する現実的な縦長点を生成するためのデータ合成手法を提案する。
このようにして,大規模合成アノテートデータセットに対する検出モデルを事前学習する。
最後に、MRIにおけるデータの多様性をシミュレートするデータ拡張手法を用いる。
これにより、利用可能な小さな注釈付き縦長データセットのサイズを増やすことができる。
アブレーション研究の結果,それぞれの貢献がセグメント化精度の向上に繋がることが示された。
提案したパイプラインを用いて,MSSEG2 MICCAIチャレンジにおいて,セグメント化と新しいMS病変の検出に最適なスコアを得た。
関連論文リスト
- SpaRG: Sparsely Reconstructed Graphs for Generalizable fMRI Analysis [8.489318619991534]
深層学習は、精神疾患や個人の特徴に関連する静止状態機能型磁気共鳴イメージング(rsfMRI)のパターンを明らかにするのに役立つ。
しかし、深層学習の発見を解釈する問題は、fMRIによる分析よりも明らかではない。
スパーシフィケーションと自己超越に基づくこれらの課題を緩和するための簡単なアプローチを提案する。
論文 参考訳(メタデータ) (2024-09-24T18:35:57Z) - Domain Adaptive Synapse Detection with Weak Point Annotations [63.97144211520869]
弱点アノテーションを用いたドメイン適応型シナプス検出のためのフレームワークであるAdaSynを提案する。
I SBI 2023のWASPSYNチャレンジでは、我々の手法が第1位にランクインした。
論文 参考訳(メタデータ) (2023-08-31T05:05:53Z) - To Repeat or Not To Repeat: Insights from Scaling LLM under Token-Crisis [50.31589712761807]
大規模言語モデル(LLM)は、事前トレーニング中にトークンに悩まされていることで知られており、Web上の高品質なテキストデータは、LSMのスケーリング制限に近づいている。
本研究では,事前学習データの再学習の結果について検討し,モデルが過度に適合する可能性が示唆された。
第2に, マルチエポック劣化の原因となる要因について検討し, データセットのサイズ, モデルパラメータ, トレーニング目標など, 重要な要因について検討した。
論文 参考訳(メタデータ) (2023-05-22T17:02:15Z) - Frequency Disentangled Learning for Segmentation of Midbrain Structures
from Quantitative Susceptibility Mapping Data [1.9150304734969674]
深層モデルでは、ターゲット関数を低周波数から高周波数に適合させる傾向がある。
ディープセグメンテーションモデルのトレーニングに十分なサンプルがない場合が多い。
周波数領域の絡み合いに基づく新しいトレーニング手法を提案する。
論文 参考訳(メタデータ) (2023-02-25T04:30:11Z) - Rapid model transfer for medical image segmentation via iterative
human-in-the-loop update: from labelled public to unlabelled clinical
datasets for multi-organ segmentation in CT [22.411929051477912]
本稿では,大規模ラベル付きデータセットからCTにおけるマルチ組織セグメント化のための大規模アンラベリングデータセットへのセグメンテーションモデルを効率的に転送するための,新規で汎用的なヒューマン・イン・ザ・ループ方式を提案する。
以上の結果から,本手法はDiceで19.7%向上するだけでなく, モデル移行時の手指ラベリングのコストを1CTあたり13.87分から1.51分に短縮し, 有望な電位で臨床的有用性を示した。
論文 参考訳(メタデータ) (2022-04-13T08:22:42Z) - Reducing Catastrophic Forgetting in Self Organizing Maps with
Internally-Induced Generative Replay [67.50637511633212]
生涯学習エージェントは、パターン知覚データの無限のストリームから継続的に学習することができる。
適応するエージェントを構築する上での歴史的難しさの1つは、ニューラルネットワークが新しいサンプルから学ぶ際に、以前取得した知識を維持するのに苦労していることである。
この問題は破滅的な忘れ(干渉)と呼ばれ、今日の機械学習の領域では未解決の問題のままである。
論文 参考訳(メタデータ) (2021-12-09T07:11:14Z) - The Imaginative Generative Adversarial Network: Automatic Data
Augmentation for Dynamic Skeleton-Based Hand Gesture and Human Action
Recognition [27.795763107984286]
本稿では、入力データの分布を近似し、この分布から新しいデータをサンプリングする新しい自動データ拡張モデルを提案する。
以上の結果から,拡張戦略は訓練が高速であり,ニューラルネットワークと最先端手法の両方の分類精度を向上させることが可能であることが示唆された。
論文 参考訳(メタデータ) (2021-05-27T11:07:09Z) - An Uncertainty-Driven GCN Refinement Strategy for Organ Segmentation [53.425900196763756]
本研究では,不確実性解析とグラフ畳み込みネットワークに基づくセグメンテーション改善手法を提案する。
半教師付きグラフ学習問題を定式化するために、特定の入力ボリュームにおける畳み込みネットワークの不確実性レベルを用いる。
本手法は膵臓で1%,脾臓で2%向上し,最先端のCRF改善法よりも優れていた。
論文 参考訳(メタデータ) (2020-12-06T18:55:07Z) - Towards Robust Partially Supervised Multi-Structure Medical Image
Segmentation on Small-Scale Data [123.03252888189546]
データ不足下における部分教師付き学習(PSL)における方法論的ギャップを埋めるために,不確実性下でのビシナルラベル(VLUU)を提案する。
マルチタスク学習とヴィジナルリスク最小化によって動機づけられたVLUUは、ビジナルラベルを生成することによって、部分的に教師付き問題を完全な教師付き問題に変換する。
本研究は,ラベル効率の高い深層学習における新たな研究の方向性を示唆するものである。
論文 参考訳(メタデータ) (2020-11-28T16:31:00Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
本研究は, 類似患者のサブグループを同定し, 数発の疾患のサブタイプ予測問題に焦点を当てた。
新しいモデルを開発するためにメタラーニング技術を導入し、関連する臨床課題から共通の経験や知識を抽出する。
我々の新しいモデルは、単純だが効果的なメタ学習マシンであるPrototypeal Networkと呼ばれる、慎重に設計されたメタラーナーに基づいて構築されている。
論文 参考訳(メタデータ) (2020-09-02T02:50:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。