論文の概要: Neural Radiosity
- arxiv url: http://arxiv.org/abs/2105.12319v1
- Date: Wed, 26 May 2021 04:10:00 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-27 13:23:13.936766
- Title: Neural Radiosity
- Title(参考訳): ニューラルラジオシティ
- Authors: Saeed Hadadan, Shuhong Chen, Matthias Zwicker
- Abstract要約: 残差方程式のノルムを最小化して方程式を解くアルゴリズムであるニューラルラジオシティを導入する。
提案手法は、画像のレンダリングから放射率方程式を分離し、シーンの任意のビューを効率的に合成する。
- 参考スコア(独自算出の注目度): 31.35525999999182
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce Neural Radiosity, an algorithm to solve the rendering equation
by minimizing the norm of its residual similar as in traditional radiosity
techniques. Traditional basis functions used in radiosity techniques, such as
piecewise polynomials or meshless basis functions are typically limited to
representing isotropic scattering from diffuse surfaces. Instead, we propose to
leverage neural networks to represent the full four-dimensional radiance
distribution, directly optimizing network parameters to minimize the norm of
the residual. Our approach decouples solving the rendering equation from
rendering (perspective) images similar as in traditional radiosity techniques,
and allows us to efficiently synthesize arbitrary views of a scene. In
addition, we propose a network architecture using geometric learnable features
that improves convergence of our solver compared to previous techniques. Our
approach leads to an algorithm that is simple to implement, and we demonstrate
its effectiveness on a variety of scenes with non-diffuse surfaces.
- Abstract(参考訳): 従来の放射能法と同様に, 残差のノルムを最小化し, レンダリング方程式を解くアルゴリズムであるneural radiosityを導入する。
放射能の手法で用いられる伝統的な基底関数、例えば分割多項式やメッシュレス基底関数は、典型的には拡散面からの等方散乱を表現することに限られる。
代わりに,ニューラルネットワークを用いて4次元放射率分布全体の表現を行い,残差のノルムを最小化するネットワークパラメータを直接最適化することを提案する。
提案手法は,従来のラジオシティ技術と同様のレンダリング画像からレンダリング方程式を分離し,シーンの任意のビューを効率的に合成する。
さらに,従来の手法と比較して解法の収束性を向上させる幾何学習機能を用いたネットワークアーキテクチャを提案する。
提案手法は, 実装が容易なアルゴリズムを導出し, 非拡散面を有する様々なシーンでその効果を実証する。
関連論文リスト
- Hyper-VolTran: Fast and Generalizable One-Shot Image to 3D Object
Structure via HyperNetworks [53.67497327319569]
画像から3Dまでを1つの視点から解く新しいニューラルレンダリング手法を提案する。
提案手法では, 符号付き距離関数を表面表現として使用し, 幾何エンコードボリュームとハイパーネットワークスによる一般化可能な事前処理を取り入れた。
本実験は,一貫した結果と高速な生成による提案手法の利点を示す。
論文 参考訳(メタデータ) (2023-12-24T08:42:37Z) - NeuRBF: A Neural Fields Representation with Adaptive Radial Basis
Functions [93.02515761070201]
本稿では,信号表現に一般放射状基底を用いる新しいタイプのニューラルネットワークを提案する。
提案手法は, 空間適応性が高く, ターゲット信号により密着可能な, フレキシブルなカーネル位置と形状を持つ一般ラジアルベース上に構築する。
ニューラルラジアンス場再構成に適用した場合,本手法はモデルサイズが小さく,訓練速度が同等である最先端のレンダリング品質を実現する。
論文 参考訳(メタデータ) (2023-09-27T06:32:05Z) - NeuS-PIR: Learning Relightable Neural Surface using Pre-Integrated Rendering [23.482941494283978]
本稿では,マルチビュー画像やビデオから可照性神経表面を復元するNeuS-PIR法を提案する。
NeRFや離散メッシュに基づく手法とは異なり,提案手法は暗黙のニューラルサーフェス表現を用いて高品質な幾何学を再構築する。
本手法は,現代のグラフィックスエンジンとシームレスに統合可能なリライトなどの高度なアプリケーションを実現する。
論文 参考訳(メタデータ) (2023-06-13T09:02:57Z) - Inverse Global Illumination using a Neural Radiometric Prior [26.29610954064107]
グローバル照明を考慮に入れた逆レンダリング手法が普及しつつある。
本稿では,従来の微分可能経路トレーサに完全経路積分を構築するための簡易な方法として,ラジオメトリック先行手法を提案する。
論文 参考訳(メタデータ) (2023-05-03T15:36:39Z) - Differentiable Rendering for Synthetic Aperture Radar Imagery [0.0]
本稿では,3次元コンピュータグラフィックスの手法とニューラルレンダリングを組み合わせた合成開口レーダ(SAR)画像の微分可能レンダリング手法を提案する。
高忠実度シミュレーションSARデータを用いた限られたSAR画像からの3次元オブジェクト再構成の逆画像問題に対するアプローチを実証する。
論文 参考訳(メタデータ) (2022-04-04T05:27:40Z) - Differentiable Neural Radiosity [28.72382947011186]
本稿では,ニューラルネットワークを用いた微分レンダリング方程式の解を表現する新しい手法である微分可能なニューラルラジオシティを紹介する。
ニューラルラジオシティ技術に触発されて、微分レンダリング方程式の残差のノルムを最小化し、ネットワークを直接最適化する。
論文 参考訳(メタデータ) (2022-01-31T12:53:37Z) - InfoNeRF: Ray Entropy Minimization for Few-Shot Neural Volume Rendering [55.70938412352287]
ニューラルな暗黙表現に基づく数ショットの新規ビュー合成のための情報理論正規化手法を提案する。
提案手法は,不十分な視点で発生する潜在的な復元の不整合を最小化する。
複数の標準ベンチマークにおいて,既存のニューラルビュー合成手法と比較して一貫した性能向上を実現している。
論文 参考訳(メタデータ) (2021-12-31T11:56:01Z) - Revisit Geophysical Imaging in A New View of Physics-informed Generative
Adversarial Learning [2.12121796606941]
完全な波形反転は高分解能地下モデルを生成する。
最小二乗関数を持つFWIは、局所ミニマ問題のような多くの欠点に悩まされる。
偏微分方程式とニューラルネットワークを用いた最近の研究は、2次元FWIに対して有望な性能を示している。
本稿では,波動方程式を識別ネットワークに統合し,物理的に一貫したモデルを正確に推定する,教師なし学習パラダイムを提案する。
論文 参考訳(メタデータ) (2021-09-23T15:54:40Z) - NerfingMVS: Guided Optimization of Neural Radiance Fields for Indoor
Multi-view Stereo [97.07453889070574]
本稿では,従来のSfM再構成と学習に基づく先行手法を併用した多視点深度推定手法を提案する。
提案手法は室内シーンにおける最先端手法を著しく上回ることを示す。
論文 参考訳(メタデータ) (2021-09-02T17:54:31Z) - Uncalibrated Neural Inverse Rendering for Photometric Stereo of General
Surfaces [103.08512487830669]
本稿では,測光ステレオ問題に対する無補間深層ニューラルネットワークフレームワークを提案する。
既存のニューラルネットワークベースの方法は、物体の正確な光方向または接地正則のいずれかまたは両方を必要とします。
本稿では,この問題に対する未調整の神経逆レンダリング手法を提案する。
論文 参考訳(メタデータ) (2020-12-12T10:33:08Z) - MetaSDF: Meta-learning Signed Distance Functions [85.81290552559817]
ニューラルな暗示表現で形状を一般化することは、各関数空間上の学習先行値に比例する。
形状空間の学習をメタラーニング問題として定式化し、勾配に基づくメタラーニングアルゴリズムを利用してこの課題を解決する。
論文 参考訳(メタデータ) (2020-06-17T05:14:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。