論文の概要: NeuS-PIR: Learning Relightable Neural Surface using Pre-Integrated Rendering
- arxiv url: http://arxiv.org/abs/2306.07632v3
- Date: Tue, 26 Mar 2024 07:00:27 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-28 01:30:07.824626
- Title: NeuS-PIR: Learning Relightable Neural Surface using Pre-Integrated Rendering
- Title(参考訳): NeuS-PIR: 先行Renderingを用いた可照性ニューラルサーフェス学習
- Authors: Shi Mao, Chenming Wu, Zhelun Shen, Yifan Wang, Dayan Wu, Liangjun Zhang,
- Abstract要約: 本稿では,マルチビュー画像やビデオから可照性神経表面を復元するNeuS-PIR法を提案する。
NeRFや離散メッシュに基づく手法とは異なり,提案手法は暗黙のニューラルサーフェス表現を用いて高品質な幾何学を再構築する。
本手法は,現代のグラフィックスエンジンとシームレスに統合可能なリライトなどの高度なアプリケーションを実現する。
- 参考スコア(独自算出の注目度): 23.482941494283978
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper presents a method, namely NeuS-PIR, for recovering relightable neural surfaces using pre-integrated rendering from multi-view images or video. Unlike methods based on NeRF and discrete meshes, our method utilizes implicit neural surface representation to reconstruct high-quality geometry, which facilitates the factorization of the radiance field into two components: a spatially varying material field and an all-frequency lighting representation. This factorization, jointly optimized using an adapted differentiable pre-integrated rendering framework with material encoding regularization, in turn addresses the ambiguity of geometry reconstruction and leads to better disentanglement and refinement of each scene property. Additionally, we introduced a method to distil indirect illumination fields from the learned representations, further recovering the complex illumination effect like inter-reflection. Consequently, our method enables advanced applications such as relighting, which can be seamlessly integrated with modern graphics engines. Qualitative and quantitative experiments have shown that NeuS-PIR outperforms existing methods across various tasks on both synthetic and real datasets. Source code is available at https://github.com/Sheldonmao/NeuSPIR
- Abstract(参考訳): 本稿では,マルチビュー画像やビデオからの事前統合レンダリングを用いて,可照性ニューラルサーフェスを復元する手法であるNeuS-PIRを提案する。
提案手法は,NeRFや離散メッシュに基づく手法とは違って,暗黙的な表面表現を用いて高品質な形状を再構成し,空間的に変化する物質場と全周波数の光表現という2つの成分に放射場を分解する。
この因子化は、適応型微分可能事前積分レンダリングフレームワークと正規化を併用して共同最適化され、幾何再構成のあいまいさに対処し、各シーン特性の歪みと改善をもたらす。
さらに、学習した表現から間接照明場を除去し、相互反射のような複雑な照明効果を回復する手法も導入した。
これにより、現代のグラフィックスエンジンとシームレスに統合可能な、リライトのような高度なアプリケーションを実現することができる。
定性的かつ定量的な実験により、NeuS-PIRは、合成データセットと実データセットの両方において、様々なタスクで既存の手法より優れていることが示されている。
ソースコードはhttps://github.com/Sheldonmao/NeuSPIRで入手できる。
関連論文リスト
- RISE-SDF: a Relightable Information-Shared Signed Distance Field for Glossy Object Inverse Rendering [26.988572852463815]
本稿では,新しいエンド・ツー・エンド・エンド・リライトブル・ニューラル・リバース・レンダリングシステムを提案する。
本アルゴリズムは,逆レンダリングとリライトにおける最先端性能を実現する。
実験により, 逆レンダリングおよびリライティングにおける最先端性能が得られた。
論文 参考訳(メタデータ) (2024-09-30T09:42:10Z) - NePF: Neural Photon Field for Single-Stage Inverse Rendering [6.977356702921476]
多視点画像の逆レンダリングに対処するために,新しい単一ステージフレームワークNePF(Neural Photon Field)を提案する。
NePFは、神経暗黙表面の重み関数の背後にある物理的意味を完全に活用することで、この統一を実現する。
我々は本手法を実データと合成データの両方で評価する。
論文 参考訳(メタデータ) (2023-11-20T06:15:46Z) - Neural Relighting with Subsurface Scattering by Learning the Radiance
Transfer Gradient [73.52585139592398]
本稿では,ボリュームレンダリングによる放射移動場学習のための新しいフレームワークを提案する。
我々は、我々のコードと、地下散乱効果を持つ新しい光ステージのオブジェクトデータセットを公開します。
論文 参考訳(メタデータ) (2023-06-15T17:56:04Z) - TensoIR: Tensorial Inverse Rendering [51.57268311847087]
テンソルIRはテンソル分解とニューラルフィールドに基づく新しい逆レンダリング手法である。
TensoRFは、放射場モデリングのための最先端のアプローチである。
論文 参考訳(メタデータ) (2023-04-24T21:39:13Z) - NeAI: A Pre-convoluted Representation for Plug-and-Play Neural Ambient
Illumination [28.433403714053103]
ニューラル環境照明(NeAI)という枠組みを提案する。
NeAIは、物理的な方法で複雑な照明を扱うための照明モデルとしてNeRF(Neural Radiance Fields)を使用している。
実験は、以前の作品と比較して、ノベルビューレンダリングの優れたパフォーマンスを示す。
論文 参考訳(メタデータ) (2023-04-18T06:32:30Z) - NeILF++: Inter-Reflectable Light Fields for Geometry and Material
Estimation [36.09503501647977]
我々は静的なシーンの照明を1つのニューラルインシデント光場(NeILF)と1つのニューラルラディアンス場(NeRF)として定式化する。
提案手法は, 幾何再構成の品質, 材料推定精度, 新規なビューレンダリングの忠実度の観点から, 最先端の結果が得られる。
論文 参考訳(メタデータ) (2023-03-30T04:59:48Z) - NeFII: Inverse Rendering for Reflectance Decomposition with Near-Field
Indirect Illumination [48.42173911185454]
逆レンダリング手法は、多視点RGB画像から幾何学、材料、照明を推定することを目的としている。
本稿では,多視点画像から材料と照明を分解するエンドツーエンドの逆レンダリングパイプラインを提案する。
論文 参考訳(メタデータ) (2023-03-29T12:05:19Z) - Physics-based Indirect Illumination for Inverse Rendering [70.27534648770057]
本稿では,複数視点のRGB画像からシーンの照明,幾何学,材料を学習する物理ベースの逆レンダリング手法を提案する。
副産物として、我々の物理ベースの逆レンダリングモデルは、フレキシブルでリアルな素材編集やリライティングを容易にする。
論文 参考訳(メタデータ) (2022-12-09T07:33:49Z) - Extracting Triangular 3D Models, Materials, and Lighting From Images [59.33666140713829]
多視点画像観測による材料と照明の協調最適化手法を提案する。
従来のグラフィックスエンジンにデプロイ可能な,空間的に変化する材料と環境を備えたメッシュを活用します。
論文 参考訳(メタデータ) (2021-11-24T13:58:20Z) - DIB-R++: Learning to Predict Lighting and Material with a Hybrid
Differentiable Renderer [78.91753256634453]
そこで本研究では,単体画像から固有物体特性を推定する難題について,微分可能量を用いて検討する。
そこで本研究では、スペクトル化とレイトレーシングを組み合わせることで、これらの効果をサポートするハイブリッド微分可能なDIBR++を提案する。
より高度な物理ベースの微分可能値と比較すると、DIBR++はコンパクトで表現力のあるモデルであるため、高い性能を持つ。
論文 参考訳(メタデータ) (2021-10-30T01:59:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。