Automatic design of quantum feature maps
- URL: http://arxiv.org/abs/2105.12626v1
- Date: Wed, 26 May 2021 15:31:10 GMT
- Title: Automatic design of quantum feature maps
- Authors: Sergio Altares-L\'opez, Angela Ribeiro, Juan Jos\'e Garc\'ia-Ripoll
- Abstract summary: We propose a new technique for the automatic generation of optimal ad-hoc ans"atze for classification by using quantum support vector machine (QSVM)
This efficient method is based on NSGA-II multiobjective genetic algorithms which allow both maximize the accuracy and minimize the ansatz size.
- Score: 0.3867363075280543
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a new technique for the automatic generation of optimal ad-hoc
ans\"atze for classification by using quantum support vector machine (QSVM).
This efficient method is based on NSGA-II multiobjective genetic algorithms
which allow both maximize the accuracy and minimize the ansatz size. It is
demonstrated the validity of the technique by a practical example with a
non-linear dataset, interpreting the resulting circuit and its outputs. We also
show other application fields of the technique that reinforce the validity of
the method, and a comparison with classical classifiers in order to understand
the advantages of using quantum machine learning.
Related papers
- Quantum Circuit Optimization using Differentiable Programming of Tensor Network States [0.0]
The said algorithm runs on classical hardware and finds shallow, accurate quantum circuits.
All circuits achieve high state fidelities within reasonable CPU time and modest memory requirements.
arXiv Detail & Related papers (2024-08-22T17:48:53Z) - Strategic Data Re-Uploads: A Pathway to Improved Quantum Classification Data Re-Uploading Strategies for Improved Quantum Classifier Performance [0.0]
Re-uploading classical information into quantum states multiple times can enhance the accuracy of quantum classifiers.
We demonstrate our approach to two classification patterns: a linear classification pattern (LCP) and a non-linear classification pattern (NLCP)
arXiv Detail & Related papers (2024-05-15T14:28:00Z) - Quantum Subroutine for Variance Estimation: Algorithmic Design and Applications [80.04533958880862]
Quantum computing sets the foundation for new ways of designing algorithms.
New challenges arise concerning which field quantum speedup can be achieved.
Looking for the design of quantum subroutines that are more efficient than their classical counterpart poses solid pillars to new powerful quantum algorithms.
arXiv Detail & Related papers (2024-02-26T09:32:07Z) - GloptiNets: Scalable Non-Convex Optimization with Certificates [61.50835040805378]
We present a novel approach to non-cube optimization with certificates, which handles smooth functions on the hypercube or on the torus.
By exploiting the regularity of the target function intrinsic in the decay of its spectrum, we allow at the same time to obtain precise certificates and leverage the advanced and powerful neural networks.
arXiv Detail & Related papers (2023-06-26T09:42:59Z) - Automatic and effective discovery of quantum kernels [43.702574335089736]
Quantum computing can empower machine learning models by enabling kernel machines to leverage quantum kernels for representing similarity measures between data.
We present a different approach, which employs optimization techniques, similar to those used in neural architecture search and AutoML.
The results obtained by testing our approach on a high-energy physics problem demonstrate that, in the best-case scenario, we can either match or improve testing accuracy with respect to the manual design approach.
arXiv Detail & Related papers (2022-09-22T16:42:14Z) - Decomposition of Matrix Product States into Shallow Quantum Circuits [62.5210028594015]
tensor network (TN) algorithms can be mapped to parametrized quantum circuits (PQCs)
We propose a new protocol for approximating TN states using realistic quantum circuits.
Our results reveal one particular protocol, involving sequential growth and optimization of the quantum circuit, to outperform all other methods.
arXiv Detail & Related papers (2022-09-01T17:08:41Z) - AutoQML: Automatic Generation and Training of Robust Quantum-Inspired
Classifiers by Using Genetic Algorithms on Grayscale Images [0.0]
We propose a new hybrid system for automatically generating and training quantum-inspired classifiers on grayscale images.
We define a dynamic fitness function to obtain the smallest possible circuit and highest accuracy on unseen data.
arXiv Detail & Related papers (2022-08-28T16:33:48Z) - Generating quantum feature maps for SVM classifier [0.0]
We present and compare two methods of generating quantum feature maps for quantum-enhanced support vector machine.
The first method is a genetic algorithm with multi-objective fitness function using penalty method, which incorporates maximizing the accuracy of classification.
The second method uses variational quantum circuit, focusing on how to contruct the ansatz based on unitary matrix decomposition.
arXiv Detail & Related papers (2022-07-23T07:28:23Z) - Quantum Approximate Optimization Algorithm Based Maximum Likelihood
Detection [80.28858481461418]
Recent advances in quantum technologies pave the way for noisy intermediate-scale quantum (NISQ) devices.
Recent advances in quantum technologies pave the way for noisy intermediate-scale quantum (NISQ) devices.
arXiv Detail & Related papers (2021-07-11T10:56:24Z) - Post-Training Quantization for Vision Transformer [85.57953732941101]
We present an effective post-training quantization algorithm for reducing the memory storage and computational costs of vision transformers.
We can obtain an 81.29% top-1 accuracy using DeiT-B model on ImageNet dataset with about 8-bit quantization.
arXiv Detail & Related papers (2021-06-27T06:27:22Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisy hybrid quantum-classical algorithms are powerful tools to maximize the use of Noisy Intermediate Scale Quantum devices.
We propose a strategy for such ansatze used in variational quantum algorithms, which we call "Efficient Circuit Training" (PECT)
Instead of optimizing all of the ansatz parameters at once, PECT launches a sequence of variational algorithms.
arXiv Detail & Related papers (2020-10-01T18:14:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.