論文の概要: Predicting Aqueous Solubility of Organic Molecules Using Deep Learning
Models with Varied Molecular Representations
- arxiv url: http://arxiv.org/abs/2105.12638v2
- Date: Thu, 27 May 2021 01:03:43 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-28 11:31:06.360255
- Title: Predicting Aqueous Solubility of Organic Molecules Using Deep Learning
Models with Varied Molecular Representations
- Title(参考訳): 修飾分子表現を用いた深層学習モデルによる有機分子の水溶性予測
- Authors: Gihan Panapitiya, Michael Girard, Aaron Hollas, Vijay Murugesan, Wei
Wang, Emily Saldanha
- Abstract要約: 本研究の目的は、幅広い有機分子の溶解度を予測できる一般モデルを開発することである。
現在利用可能な最大の溶解度データセットを用いて、分子構造から溶解度を予測するディープラーニングモデルを構築した。
分子ディスクリプタを用いたモデルでは,GNNモデルでも優れた性能が得られた。
- 参考スコア(独自算出の注目度): 3.10678679607547
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Determining the aqueous solubility of molecules is a vital step in many
pharmaceutical, environmental, and energy storage applications. Despite efforts
made over decades, there are still challenges associated with developing a
solubility prediction model with satisfactory accuracy for many of these
applications. The goal of this study is to develop a general model capable of
predicting the solubility of a broad range of organic molecules. Using the
largest currently available solubility dataset, we implement deep
learning-based models to predict solubility from molecular structure and
explore several different molecular representations including molecular
descriptors, simplified molecular-input line-entry system (SMILES) strings,
molecular graphs, and three-dimensional (3D) atomic coordinates using four
different neural network architectures - fully connected neural networks
(FCNNs), recurrent neural networks (RNNs), graph neural networks (GNNs), and
SchNet. We find that models using molecular descriptors achieve the best
performance, with GNN models also achieving good performance. We perform
extensive error analysis to understand the molecular properties that influence
model performance, perform feature analysis to understand which information
about molecular structure is most valuable for prediction, and perform a
transfer learning and data size study to understand the impact of data
availability on model performance.
- Abstract(参考訳): 分子の水溶性を決定することは、多くの医薬品、環境、エネルギー貯蔵用途において重要なステップである。
数十年にわたる努力にもかかわらず、これらのアプリケーションの多くに十分な精度を持つ溶解度予測モデルの開発には依然として課題がある。
本研究の目的は,幅広い有機分子の溶解度を予測できる汎用モデルを開発することである。
Using the largest currently available solubility dataset, we implement deep learning-based models to predict solubility from molecular structure and explore several different molecular representations including molecular descriptors, simplified molecular-input line-entry system (SMILES) strings, molecular graphs, and three-dimensional (3D) atomic coordinates using four different neural network architectures - fully connected neural networks (FCNNs), recurrent neural networks (RNNs), graph neural networks (GNNs), and SchNet.
分子ディスクリプタを用いたモデルでは,GNNモデルでも優れた性能が得られた。
モデル性能に影響を与える分子特性を理解し,どの分子構造に関する情報が最も価値があるかを理解するために特徴解析を行い,モデル性能に対するデータ可用性の影響を理解するために,転送学習とデータサイズ研究を行う。
関連論文リスト
- FragNet: A Graph Neural Network for Molecular Property Prediction with Four Layers of Interpretability [0.7499722271664147]
本稿では,現在の最先端モデルに匹敵する予測精度を達成可能なグラフニューラルネットワークであるFragNetアーキテクチャを紹介する。
このモデルにより、どの原子、共有結合、分子断片、分子フラグメント結合が与えられた分子特性の予測に重要なのかを理解することができる。
FragNetの解釈能力は、分子構造と分子特性の間の学習パターンから科学的洞察を得るための鍵となる。
論文 参考訳(メタデータ) (2024-10-16T01:37:01Z) - Integrating Chemical Language and Molecular Graph in Multimodal Fused Deep Learning for Drug Property Prediction [9.388979080270103]
分子表現の異なる多モード深層学習モデルを構築した。
モノモーダルモデルと比較すると,マルチモーダルフューズドディープラーニング(MMFDL)モデルは単一モデルよりも精度,信頼性,耐雑音性に優れている。
論文 参考訳(メタデータ) (2023-12-29T07:19:42Z) - Predicting Drug Solubility Using Different Machine Learning Methods --
Linear Regression Model with Extracted Chemical Features vs Graph
Convolutional Neural Network [1.8936798735951967]
我々は、線形回帰モデルとグラフ畳み込みニューラルネットワーク(GCNN)モデルという2つの機械学習モデルを用いて、様々な実験データセットを用いた。
現在のGCNNモデルは解釈可能性に制限があるが、線形回帰モデルは、基礎となる要因の詳細な分析を可能にする。
化学の観点からは, 線形回帰モデルを用いて, 個々の原子種と官能基が全体の溶解度に及ぼす影響を解明した。
論文 参考訳(メタデータ) (2023-08-23T15:35:20Z) - Implicit Geometry and Interaction Embeddings Improve Few-Shot Molecular
Property Prediction [53.06671763877109]
我々は, 複雑な分子特性を符号化した分子埋め込みを開発し, 数発の分子特性予測の性能を向上させる。
我々の手法は大量の合成データ、すなわち分子ドッキング計算の結果を利用する。
複数の分子特性予測ベンチマークでは、埋め込み空間からのトレーニングにより、マルチタスク、MAML、プロトタイプラーニング性能が大幅に向上する。
論文 参考訳(メタデータ) (2023-02-04T01:32:40Z) - A Molecular Multimodal Foundation Model Associating Molecule Graphs with
Natural Language [63.60376252491507]
本稿では,分子グラフとその意味的関連テキストデータから事前学習した分子マルチモーダル基礎モデルを提案する。
我々のモデルは、生物学、化学、材料、環境、医学などの分野において、AIを動力とする分野に幅広い影響を与えるだろうと考えています。
論文 参考訳(メタデータ) (2022-09-12T00:56:57Z) - Graph neural networks for the prediction of molecular structure-property
relationships [59.11160990637615]
グラフニューラルネットワーク(GNN)は、分子グラフ上で直接動作する新しい機械学習手法である。
GNNは、エンドツーエンドでプロパティを学習できるため、情報記述子の必要性を回避することができる。
本稿では、分子特性予測のための2つの例を通して、GNNの基礎を説明し、GNNの応用を実証する。
論文 参考訳(メタデータ) (2022-07-25T11:30:44Z) - Accurate Prediction of Free Solvation Energy of Organic Molecules via
Graph Attention Network and Message Passing Neural Network from Pairwise
Atomistic Interactions [14.87390785780636]
本稿では,グラフニューラルネットワーク(gnn)アーキテクチャに基づく自由解法エネルギー予測問題に対する2つの新しいモデルを提案する。
gnnは分子の予測情報をグラフ構造から直接低次元の特徴として要約することができる。
提案手法は, 解解自由エネルギー予測のタスクにおいて, 既存の機械学習手法に加えて, 量子力学および分子動力学の手法を上回っていることを示す。
論文 参考訳(メタデータ) (2021-04-15T22:15:18Z) - Few-Shot Graph Learning for Molecular Property Prediction [46.60746023179724]
分子特性予測の新しいモデルであるMeta-MGNNを提案する。
ラベルのない分子情報を利用するため、Meta-MGNNはさらに分子構造、属性ベースの自己監視モジュール、および自己注意のタスクウェイトを組み込む。
2つの公開マルチプロパティデータセットに関する広範な実験は、Meta-MGNNがさまざまな最先端のメソッドを上回っていることを示しています。
論文 参考訳(メタデータ) (2021-02-16T01:55:34Z) - ASGN: An Active Semi-supervised Graph Neural Network for Molecular
Property Prediction [61.33144688400446]
本稿では,ラベル付き分子とラベルなし分子の両方を組み込んだ,アクティブ半教師付きグラフニューラルネットワーク(ASGN)を提案する。
教師モデルでは,分子構造や分子分布から情報を共同で活用する汎用表現を学習するための,新しい半教師付き学習手法を提案する。
最後に,分子多様性の観点から,フレームワーク学習全体を通して情報的データを選択するための新しい能動的学習戦略を提案する。
論文 参考訳(メタデータ) (2020-07-07T04:22:39Z) - Self-Supervised Graph Transformer on Large-Scale Molecular Data [73.3448373618865]
分子表現学習のための新しいフレームワークGROVERを提案する。
GROVERは、分子の豊富な構造的および意味的な情報を、巨大な未標識分子データから学習することができる。
分子表現学習において、最大のGNNであり、最大のトレーニングデータセットである、1000万個の未標識分子に1億のパラメータを持つGROVERを事前訓練します。
論文 参考訳(メタデータ) (2020-06-18T08:37:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。