論文の概要: FragNet: A Graph Neural Network for Molecular Property Prediction with Four Layers of Interpretability
- arxiv url: http://arxiv.org/abs/2410.12156v1
- Date: Wed, 16 Oct 2024 01:37:01 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-17 13:43:13.865067
- Title: FragNet: A Graph Neural Network for Molecular Property Prediction with Four Layers of Interpretability
- Title(参考訳): FragNet: 4層の解釈可能性を持つ分子特性予測のためのグラフニューラルネットワーク
- Authors: Gihan Panapitiya, Peiyuan Gao, C Mark Maupin, Emily G Saldanha,
- Abstract要約: 本稿では,現在の最先端モデルに匹敵する予測精度を達成可能なグラフニューラルネットワークであるFragNetアーキテクチャを紹介する。
このモデルにより、どの原子、共有結合、分子断片、分子フラグメント結合が与えられた分子特性の予測に重要なのかを理解することができる。
FragNetの解釈能力は、分子構造と分子特性の間の学習パターンから科学的洞察を得るための鍵となる。
- 参考スコア(独自算出の注目度): 0.7499722271664147
- License:
- Abstract: Molecular property prediction is a crucial step in many modern-day scientific applications including drug discovery and energy storage material design. Despite the availability of numerous machine learning models for this task, we are lacking in models that provide both high accuracies and interpretability of the predictions. We introduce the FragNet architecture, a graph neural network not only capable of achieving prediction accuracies comparable to the current state-of-the-art models, but also able to provide insight on four levels of molecular substructures. This model enables understanding of which atoms, bonds, molecular fragments, and molecular fragment connections are critical in the prediction of a given molecular property. The ability to interpret the importance of connections between fragments is of particular interest for molecules which have substructures that are not connected with regular covalent bonds. The interpretable capabilities of FragNet are key to gaining scientific insights from the model's learned patterns between molecular structure and molecular properties.
- Abstract(参考訳): 分子特性予測は、薬物発見やエネルギー貯蔵材料設計など、現代の多くの科学応用において重要なステップである。
このタスクには多数の機械学習モデルが利用可能であるにも関わらず、高い精度と予測の解釈可能性の両方を提供するモデルに欠けています。
FragNetアーキテクチャは、現在の最先端モデルに匹敵する予測精度を達成できるだけでなく、分子サブストラクチャの4つのレベルに関する洞察を提供することができるグラフニューラルネットワークである。
このモデルにより、特定の分子特性の予測においてどの原子、結合、分子断片、分子フラグメント接続が重要なのかを理解することができる。
フラグメント間の結合の重要性を解釈する能力は、通常の共有結合と結合しない部分構造を持つ分子に特に関心がある。
FragNetの解釈能力は、分子構造と分子特性の間の学習パターンから科学的洞察を得るための鍵となる。
関連論文リスト
- Molecular Graph Representation Learning via Structural Similarity Information [11.38130169319915]
我々は新しい分子グラフ表現学習法である textbf Structure similarity Motif GNN (MSSM-GNN) を紹介する。
特に,分子間の類似性を定量的に表現するために,グラフカーネルアルゴリズムを利用した特殊設計グラフを提案する。
我々はGNNを用いて分子グラフから特徴表現を学習し、追加の分子表現情報を組み込むことで特性予測の精度を高めることを目的としている。
論文 参考訳(メタデータ) (2024-09-13T06:59:10Z) - MultiModal-Learning for Predicting Molecular Properties: A Framework Based on Image and Graph Structures [2.5563339057415218]
MolIGは、画像とグラフ構造に基づいて分子特性を予測するための、新しいMultiModaL分子事前学習フレームワークである。
両者の分子表現の強さを融合させる。
ベンチマークグループ内の分子特性予測に関連する下流タスクでは、パフォーマンスが向上する。
論文 参考訳(メタデータ) (2023-11-28T10:28:35Z) - Bi-level Contrastive Learning for Knowledge-Enhanced Molecule
Representations [55.42602325017405]
本稿では,分子の2レベル構造を考慮した新しいGODE法を提案する。
異なるグラフ構造上で2つのグラフニューラルネットワーク(GNN)を事前訓練し、対照的な学習と組み合わせることで、GODEは分子構造を対応する知識グラフサブ構造と融合させる。
11の化学特性タスクを微調整した場合、我々のモデルは既存のベンチマークよりも優れており、分類タスクの平均ROC-AUCアップリフトは13.8%、回帰タスクの平均RMSE/MAEエンハンスメントは35.1%である。
論文 参考訳(メタデータ) (2023-06-02T15:49:45Z) - Atomic and Subgraph-aware Bilateral Aggregation for Molecular
Representation Learning [57.670845619155195]
我々は、原子とサブグラフを意識したバイラテラルアグリゲーション(ASBA)と呼ばれる分子表現学習の新しいモデルを導入する。
ASBAは、両方の種類の情報を統合することで、以前の原子単位とサブグラフ単位のモデルの限界に対処する。
本手法は,分子特性予測のための表現をより包括的に学習する方法を提供する。
論文 参考訳(メタデータ) (2023-05-22T00:56:00Z) - Implicit Geometry and Interaction Embeddings Improve Few-Shot Molecular
Property Prediction [53.06671763877109]
我々は, 複雑な分子特性を符号化した分子埋め込みを開発し, 数発の分子特性予測の性能を向上させる。
我々の手法は大量の合成データ、すなわち分子ドッキング計算の結果を利用する。
複数の分子特性予測ベンチマークでは、埋め込み空間からのトレーニングにより、マルチタスク、MAML、プロトタイプラーニング性能が大幅に向上する。
論文 参考訳(メタデータ) (2023-02-04T01:32:40Z) - A Molecular Multimodal Foundation Model Associating Molecule Graphs with
Natural Language [63.60376252491507]
本稿では,分子グラフとその意味的関連テキストデータから事前学習した分子マルチモーダル基礎モデルを提案する。
我々のモデルは、生物学、化学、材料、環境、医学などの分野において、AIを動力とする分野に幅広い影響を与えるだろうと考えています。
論文 参考訳(メタデータ) (2022-09-12T00:56:57Z) - HiGNN: Hierarchical Informative Graph Neural Networks for Molecular
Property Prediction Equipped with Feature-Wise Attention [5.735627221409312]
分子特性を予測するための階層型情報グラフニューラルネットワークフレームワーク(HiGNN)を提案する。
実験により、HiGNNは、多くの挑戦的な薬物発見関連ベンチマークデータセットに対して最先端の予測性能を達成することが示された。
論文 参考訳(メタデータ) (2022-08-30T05:16:15Z) - Graph neural networks for the prediction of molecular structure-property
relationships [59.11160990637615]
グラフニューラルネットワーク(GNN)は、分子グラフ上で直接動作する新しい機械学習手法である。
GNNは、エンドツーエンドでプロパティを学習できるため、情報記述子の必要性を回避することができる。
本稿では、分子特性予測のための2つの例を通して、GNNの基礎を説明し、GNNの応用を実証する。
論文 参考訳(メタデータ) (2022-07-25T11:30:44Z) - Flexible dual-branched message passing neural network for quantum
mechanical property prediction with molecular conformation [16.08677447593939]
メッセージパッシングフレームワークに基づく分子特性予測のための二重分岐ニューラルネットワークを提案する。
本モデルでは,様々なスケールで異種分子の特徴を学習し,予測対象に応じて柔軟に学習する。
論文 参考訳(メタデータ) (2021-06-14T10:00:39Z) - Predicting Aqueous Solubility of Organic Molecules Using Deep Learning
Models with Varied Molecular Representations [3.10678679607547]
本研究の目的は、幅広い有機分子の溶解度を予測できる一般モデルを開発することである。
現在利用可能な最大の溶解度データセットを用いて、分子構造から溶解度を予測するディープラーニングモデルを構築した。
分子ディスクリプタを用いたモデルでは,GNNモデルでも優れた性能が得られた。
論文 参考訳(メタデータ) (2021-05-26T15:54:54Z) - Multi-View Graph Neural Networks for Molecular Property Prediction [67.54644592806876]
マルチビューグラフニューラルネットワーク(MV-GNN)を提案する。
MV-GNNでは,学習過程を安定させるために,自己注意型読み出しコンポーネントと不一致損失を導入する。
我々は、相互依存型メッセージパッシング方式を提案することにより、MV-GNNの表現力をさらに強化する。
論文 参考訳(メタデータ) (2020-05-17T04:46:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。