Nonlinear effects in the excited states of many-fermion Einstein-Dirac
solitons
- URL: http://arxiv.org/abs/2105.12672v1
- Date: Wed, 26 May 2021 16:37:09 GMT
- Title: Nonlinear effects in the excited states of many-fermion Einstein-Dirac
solitons
- Authors: Peter E. D. Leith, Chris A. Hooley, Keith Horne, David G. Dritschel
- Abstract summary: We present an analysis of excited-state solutions for a gravitationally localized system consisting of a filled shell of high-angular-momentum fermions.
We show that, even when the particle number is relatively low, the increased nonlinearity in the system causes a significant deviation in behavior from the two-fermion case.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present an analysis of excited-state solutions for a gravitationally
localized system consisting of a filled shell of high-angular-momentum
fermions, using the Einstein-Dirac formalism introduced by Finster, Smoller,
and Yau [Phys. Rev. D 59, 104020 (1999)]. We show that, even when the particle
number is relatively low ($N_f\ge 6$), the increased nonlinearity in the system
causes a significant deviation in behavior from the two-fermion case.
Excited-state solutions can no longer be uniquely identified by the value of
their central redshift, with this multiplicity producing distortions in the
characteristic spiraling forms of the mass-radius relations. We discuss the
connection between this effect and the internal structure of solutions in the
relativistic regime.
Related papers
- Dynamics of atom-field interaction inside a nonlinear Kerr-like medium filled optical cavity [1.2974520793373163]
We investigate the dynamics of two two-level atoms interacting with a two-mode field inside an optical cavity.
We derive the exact analytical solution of the time-dependent Schr"odinger equation.
We quantify the atom-atom entanglement using linear entropy.
arXiv Detail & Related papers (2025-03-21T05:45:51Z) - Quench dynamics in topologically non-trivial quantum many-body systems [2.6469002915402418]
We investigate the nonequilibrium dynamics of a groundstate fermionic many body gas subjected to a quench between parameter regimes of a nontrivial Hamiltonian.
arXiv Detail & Related papers (2024-12-03T02:40:21Z) - Diffraction and pseudospectra in non-Hermitian quasiperiodic lattices [0.0]
spatial distributions of gain and loss elements are physically possible in the context of integrated photonic waveguide arrays.
We systematically study the non-Hermitian quasiperiodic Aubry-Andr'e-Harper model with on-site gain and loss distribution (NHAAH)
arXiv Detail & Related papers (2024-10-11T18:38:30Z) - Non-equilibrium dynamics of charged dual-unitary circuits [44.99833362998488]
interplay between symmetries and entanglement in out-of-equilibrium quantum systems is currently at the centre of an intense multidisciplinary research effort.
We show that one can introduce a class of solvable states, which extends that of generic dual unitary circuits.
In contrast to the known class of solvable states, which relax to the infinite temperature state, these states relax to a family of non-trivial generalised Gibbs ensembles.
arXiv Detail & Related papers (2024-07-31T17:57:14Z) - Bound polariton states in the Dicke-Ising model [41.94295877935867]
We present a study of hybrid light-matter excitations in cavity QED materials.
We derive the exact excitations of the system in the thermodynamic limit.
arXiv Detail & Related papers (2024-06-17T18:00:01Z) - Linear and Non-Linear Response of Quadratic Lindbladians [0.0]
Quadratic Lindbladians encompass a rich class of dissipative electronic and bosonic quantum systems.
We develop a Lindblad-Keldysh response formalism for open quantum systems that elucidates their steady-state response properties.
arXiv Detail & Related papers (2024-02-09T18:12:15Z) - Dispersive Non-reciprocity between a Qubit and a Cavity [24.911532779175175]
We present an experimental study of a non-reciprocal dispersive-type interaction between a transmon qubit and a superconducting cavity.
We show that the qubit-cavity dynamics is well-described in a wide parameter regime by a simple non-reciprocal master-equation model.
arXiv Detail & Related papers (2023-07-07T17:19:18Z) - Non-equilibrium quantum probing through linear response [41.94295877935867]
We study the system's response to unitary perturbations, as well as non-unitary perturbations, affecting the properties of the environment.
We show that linear response, combined with a quantum probing approach, can effectively provide valuable quantitative information about the perturbation and characteristics of the environment.
arXiv Detail & Related papers (2023-06-14T13:31:23Z) - Quantum Metric Unveils Defect Freezing in Non-Hermitian Systems [1.2289361708127877]
We study the dynamics of an exactly solvable non-Hermitian system, hosting both $mathcalPT$-symmetric and $mathcalPT$-broken modes.
In contrast to Hermitian systems, our study reveals that PT -broken time evolution leads to defect freezing and hence the violation of adiabaticity.
arXiv Detail & Related papers (2023-01-05T19:00:00Z) - Slow semiclassical dynamics of a two-dimensional Hubbard model in
disorder-free potentials [77.34726150561087]
We show that introduction of harmonic and spin-dependent linear potentials sufficiently validates fTWA for longer times.
In particular, we focus on a finite two-dimensional system and show that at intermediate linear potential strength, the addition of a harmonic potential and spin dependence of the tilt, results in subdiffusive dynamics.
arXiv Detail & Related papers (2022-10-03T16:51:25Z) - Decimation technique for open quantum systems: a case study with
driven-dissipative bosonic chains [62.997667081978825]
Unavoidable coupling of quantum systems to external degrees of freedom leads to dissipative (non-unitary) dynamics.
We introduce a method to deal with these systems based on the calculation of (dissipative) lattice Green's function.
We illustrate the power of this method with several examples of driven-dissipative bosonic chains of increasing complexity.
arXiv Detail & Related papers (2022-02-15T19:00:09Z) - Probing non-Hermitian phase transitions in curved space via quench
dynamics [0.0]
Non-Hermitian Hamiltonians are relevant to describe the features of a broad class of physical phenomena.
We study the interplay of geometry and non-Hermitian dynamics by unveiling the existence of curvature-dependent non-Hermitian phase transitions.
arXiv Detail & Related papers (2020-12-14T19:47:59Z) - Entanglement-spectrum characterization of ground-state nonanalyticities
in coupled excitation-phonon models [0.0]
Small-polaron transitions are analyzed through the prism of the entanglement spectrum of the excitation-phonon system.
The behavior of the entanglement entropy in the vicinity of the critical excitation-phonon coupling strength chiefly originates from one specific entanglement-spectrum eigenvalue.
arXiv Detail & Related papers (2020-01-30T08:41:00Z) - Non-reciprocal Cavity Polariton with Atoms Strongly Coupled to Optical
Cavity [21.013802417752025]
We experimentally demonstrate a chiral cavity QED system with multiple atoms strongly coupled to a Fabry-Perot cavity.
By polarizing the internal quantum state of the atoms, the time-reversal symmetry of the atom-cavity interaction is broken.
The strongly coupled atom-cavity system can be described by non-reciprocal quasiparticles, i.e., the cavity polariton.
arXiv Detail & Related papers (2019-11-23T02:32:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.