論文の概要: MeshCNN Fundamentals: Geometric Learning through a Reconstructable
Representation
- arxiv url: http://arxiv.org/abs/2105.13277v1
- Date: Thu, 27 May 2021 16:22:44 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-28 20:52:48.303034
- Title: MeshCNN Fundamentals: Geometric Learning through a Reconstructable
Representation
- Title(参考訳): MeshCNNの基礎: 再構成可能な表現による幾何学的学習
- Authors: Amir Barda, Yotam Erel, Amit H. Bermano
- Abstract要約: より高品質な学習を実現するために,幾何学的推論を用いたMeshCNNを提案する。
第一および第二の基本形式を、エッジ中心、回転、変換不変、再構成可能な表現として導入する。
この基本形式に基づく表現が、メッシュ上でアクセス可能な生成機械学習への扉を開くことを実証する。
- 参考スコア(独自算出の注目度): 1.2891210250935146
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Mesh-based learning is one of the popular approaches nowadays to learn
shapes. The most established backbone in this field is MeshCNN. In this paper,
we propose infusing MeshCNN with geometric reasoning to achieve higher quality
learning. Through careful analysis of the way geometry is represented
through-out the network, we submit that this representation should be rigid
motion invariant, and should allow reconstructing the original geometry.
Accordingly, we introduce the first and second fundamental forms as an
edge-centric, rotation and translation invariant, reconstructable
representation. In addition, we update the originally proposed pooling scheme
to be more geometrically driven. We validate our analysis through
experimentation, and present consistent improvement upon the MeshCNN baseline,
as well as other more elaborate state-of-the-art architectures. Furthermore, we
demonstrate this fundamental forms-based representation opens the door to
accessible generative machine learning over meshes.
- Abstract(参考訳): メッシュベースの学習は、近年、形状を学ぶための一般的なアプローチの1つです。
この分野で最も確立されたバックボーンはMeshCNNである。
本稿では,より高品質な学習を実現するために,幾何学的推論を用いたmeshcnnの導入を提案する。
ネットワーク上での幾何表現の仕方を注意深く分析することで、この表現は剛体運動不変量であり、元の幾何学を再構築できるべきである。
したがって、第一基本形式と第二基本形式を、エッジ中心、回転および変換不変な再構成可能な表現として導入する。
さらに,当初提案していたプーリングスキームをより幾何学的に駆動できるように更新する。
実験を通じて分析を検証し,meshcnnベースライン上で一貫した改善と,より精巧な最先端アーキテクチャを示す。
さらに、この基本的な形式に基づく表現は、メッシュ上でアクセス可能な生成機械学習への扉を開くことを実証する。
関連論文リスト
- SpaceMesh: A Continuous Representation for Learning Manifold Surface Meshes [61.110517195874074]
本稿では,ニューラルネットワークの出力として,複雑な接続性を持つ多様体多角形メッシュを直接生成する手法を提案する。
私たちの重要なイノベーションは、各メッシュで連続的な遅延接続空間を定義することです。
アプリケーションでは、このアプローチは生成モデルから高品質な出力を得るだけでなく、メッシュ修復のような挑戦的な幾何処理タスクを直接学習することを可能にする。
論文 参考訳(メタデータ) (2024-09-30T17:59:03Z) - A Hitchhiker's Guide to Geometric GNNs for 3D Atomic Systems [87.30652640973317]
原子系の計算モデリングの最近の進歩は、これらを3次元ユークリッド空間のノードとして埋め込まれた原子を含む幾何学的グラフとして表現している。
Geometric Graph Neural Networksは、タンパク質構造予測から分子シミュレーション、物質生成まで、幅広い応用を駆動する機械学習アーキテクチャとして好まれている。
本稿では,3次元原子システムのための幾何学的GNNの分野について,包括的で自己完結した概要を述べる。
論文 参考訳(メタデータ) (2023-12-12T18:44:19Z) - Geo-SIC: Learning Deformable Geometric Shapes in Deep Image Classifiers [8.781861951759948]
本稿では,画像分類の性能向上のために,変形空間における変形可能な形状を学習する最初のディープラーニングモデルGeo-SICを提案する。
画像空間と潜時形状空間の両方から特徴を同時に導出する,クラス内変動の大きい新設計のフレームワークを提案する。
幾何学的形状表現の教師なし学習を取り入れた強化型分類網を開発した。
論文 参考訳(メタデータ) (2022-10-25T01:55:17Z) - Neural Template: Topology-aware Reconstruction and Disentangled
Generation of 3D Meshes [52.038346313823524]
本稿では,Distangled Topologyによる3次元メッシュ再構成と生成のためのDTNetという新しいフレームワークを提案する。
提案手法は,最先端の手法と比較して,特に多様なトポロジで高品質なメッシュを生成することができる。
論文 参考訳(メタデータ) (2022-06-10T08:32:57Z) - Improving Shape Awareness and Interpretability in Deep Networks Using
Geometric Moments [0.0]
画像分類のためのディープネットワークは、しばしばオブジェクトの形状よりもテクスチャ情報に依存している。
本稿では,幾何学的モーメントにインスパイアされたディープラーニングモデルを提案する。
標準画像分類データセットにおける本手法の有効性を実証する。
論文 参考訳(メタデータ) (2022-05-24T02:08:05Z) - Revisiting Transformation Invariant Geometric Deep Learning: Are Initial
Representations All You Need? [80.86819657126041]
変換不変および距離保存初期表現は変換不変性を達成するのに十分であることを示す。
具体的には、多次元スケーリングを変更することで、変換不変かつ距離保存された初期点表現を実現する。
我々は、TinvNNが変換不変性を厳密に保証し、既存のニューラルネットワークと組み合わせられるほど汎用的で柔軟なことを証明した。
論文 参考訳(メタデータ) (2021-12-23T03:52:33Z) - Frame Averaging for Equivariant Shape Space Learning [85.42901997467754]
形状空間学習に対称性を組み込む自然な方法は、形状空間(エンコーダ)への写像と形状空間(デコーダ)からの写像が関連する対称性に同値であることを問うことである。
本稿では,2つのコントリビューションを導入することで,エンコーダとデコーダの等価性を組み込む枠組みを提案する。
論文 参考訳(メタデータ) (2021-12-03T06:41:19Z) - Learning Geometry-Dependent and Physics-Based Inverse Image
Reconstruction [9.565653662306806]
本稿では,その基盤となる幾何学と物理を活かした逆画像の学習手法を提案する。
まず,未知変数と計測変数を記述可能な非ユークリッド符号化復号ネットワークを提案する。
次に、2つの領域間の幾何依存物理学を2部グラフで明示的にモデル化することで学習する。
論文 参考訳(メタデータ) (2020-07-18T21:53:27Z) - Neural Subdivision [58.97214948753937]
本稿では,データ駆動型粗粒度モデリングの新しいフレームワークであるNeural Subdivisionを紹介する。
すべてのローカルメッシュパッチで同じネットワーク重みのセットを最適化するため、特定の入力メッシュや固定属、カテゴリに制約されないアーキテクチャを提供します。
単一の高分解能メッシュでトレーニングしても,本手法は新規な形状に対して合理的な区分を生成する。
論文 参考訳(メタデータ) (2020-05-04T20:03:21Z) - Deep Manifold Prior [37.725563645899584]
本稿では,3次元形状の表面などの多様体構造データに先行する手法を提案する。
この方法で生成された曲面は滑らかであり、ガウス過程を特徴とする制限的な挙動を示し、完全連結および畳み込みネットワークに対して数学的にそのような特性を導出する。
論文 参考訳(メタデータ) (2020-04-08T20:47:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。