論文の概要: SpaceMesh: A Continuous Representation for Learning Manifold Surface Meshes
- arxiv url: http://arxiv.org/abs/2409.20562v1
- Date: Mon, 30 Sep 2024 17:59:03 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-02 01:35:17.308911
- Title: SpaceMesh: A Continuous Representation for Learning Manifold Surface Meshes
- Title(参考訳): SpaceMesh: マニフォールドな表面メッシュを学習するための継続的表現
- Authors: Tianchang Shen, Zhaoshuo Li, Marc Law, Matan Atzmon, Sanja Fidler, James Lucas, Jun Gao, Nicholas Sharp,
- Abstract要約: 本稿では,ニューラルネットワークの出力として,複雑な接続性を持つ多様体多角形メッシュを直接生成する手法を提案する。
私たちの重要なイノベーションは、各メッシュで連続的な遅延接続空間を定義することです。
アプリケーションでは、このアプローチは生成モデルから高品質な出力を得るだけでなく、メッシュ修復のような挑戦的な幾何処理タスクを直接学習することを可能にする。
- 参考スコア(独自算出の注目度): 61.110517195874074
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Meshes are ubiquitous in visual computing and simulation, yet most existing machine learning techniques represent meshes only indirectly, e.g. as the level set of a scalar field or deformation of a template, or as a disordered triangle soup lacking local structure. This work presents a scheme to directly generate manifold, polygonal meshes of complex connectivity as the output of a neural network. Our key innovation is to define a continuous latent connectivity space at each mesh vertex, which implies the discrete mesh. In particular, our vertex embeddings generate cyclic neighbor relationships in a halfedge mesh representation, which gives a guarantee of edge-manifoldness and the ability to represent general polygonal meshes. This representation is well-suited to machine learning and stochastic optimization, without restriction on connectivity or topology. We first explore the basic properties of this representation, then use it to fit distributions of meshes from large datasets. The resulting models generate diverse meshes with tessellation structure learned from the dataset population, with concise details and high-quality mesh elements. In applications, this approach not only yields high-quality outputs from generative models, but also enables directly learning challenging geometry processing tasks such as mesh repair.
- Abstract(参考訳): メッシュはビジュアルコンピューティングやシミュレーションではユビキタスだが、既存の機械学習技術はメッシュを間接的にのみ表現している。
この研究は、ニューラルネットワークの出力として複雑な接続の多様体多角形メッシュを直接生成するスキームを提案する。
私たちの重要なイノベーションは、各メッシュ頂点で連続的な遅延接続空間を定義することです。
特に, 頂点埋め込みは, 半エッジメッシュ表現における巡回近傍関係を生じさせ, エッジ多様体性の保証と一般多角形メッシュの表現能力を与える。
この表現は、接続性やトポロジに制限されることなく、機械学習や確率最適化に適している。
まず、この表現の基本的な特性を調べ、それから大きなデータセットからのメッシュの分布に適合させる。
得られたモデルは、データセットの個体群から学習したテッセルレーション構造を持つ多様なメッシュを生成し、簡潔な詳細と高品質なメッシュ要素を持つ。
アプリケーションでは、このアプローチは生成モデルから高品質な出力を得るだけでなく、メッシュ修復のような挑戦的な幾何処理タスクを直接学習することを可能にする。
関連論文リスト
- ReFiNe: Recursive Field Networks for Cross-modal Multi-scene Representation [37.24514001359966]
連続神経場として表現される複数の形状を、従来より高い精度で符号化する方法を示す。
我々は、データセット毎に1つのネットワークで、最先端のマルチシーン再構成と圧縮結果を実証する。
論文 参考訳(メタデータ) (2024-06-06T17:55:34Z) - PivotMesh: Generic 3D Mesh Generation via Pivot Vertices Guidance [66.40153183581894]
汎用的でスケーラブルなメッシュ生成フレームワークであるPivotMeshを紹介します。
PivotMeshは、ネイティブメッシュ生成を大規模データセットに拡張する最初の試みである。
PivotMeshは,様々なカテゴリにまたがって,コンパクトでシャープな3Dメッシュを生成することができることを示す。
論文 参考訳(メタデータ) (2024-05-27T07:13:13Z) - Mesh Denoising Transformer [104.5404564075393]
Mesh Denoisingは、入力メッシュからノイズを取り除き、特徴構造を保存することを目的としている。
SurfaceFormerはTransformerベースのメッシュDenoisingフレームワークのパイオニアだ。
局所曲面記述子(Local Surface Descriptor)として知られる新しい表現は、局所幾何学的複雑さをキャプチャする。
Denoising Transformerモジュールは、マルチモーダル情報を受信し、効率的なグローバル機能アグリゲーションを実現する。
論文 参考訳(メタデータ) (2024-05-10T15:27:43Z) - NeuralMeshing: Differentiable Meshing of Implicit Neural Representations [63.18340058854517]
ニューラルな暗黙表現から表面メッシュを抽出する新しい微分可能なメッシュアルゴリズムを提案する。
本手法は,通常のテッセルレーションパターンと,既存の手法に比べて三角形面の少ないメッシュを生成する。
論文 参考訳(メタデータ) (2022-10-05T16:52:25Z) - Neural Marching Cubes [14.314650721573743]
我々は、離散化された暗黙の場から三角形メッシュを抽出するデータ駆動型アプローチであるNeural Marching Cubes (NMC)を紹介する。
我々のネットワークは、限られたフィールドで局所的な特徴を学習し、新しい形状や新しいデータセットによく適応することを示す。
論文 参考訳(メタデータ) (2021-06-21T17:18:52Z) - Primal-Dual Mesh Convolutional Neural Networks [62.165239866312334]
本稿では,グラフ・ニューラル・ネットワークの文献からトライアングル・メッシュへ引き起こされた原始双対のフレームワークを提案する。
提案手法は,3次元メッシュのエッジと顔の両方を入力として特徴付け,動的に集約する。
メッシュ単純化の文献から得られたツールを用いて、我々のアプローチに関する理論的知見を提供する。
論文 参考訳(メタデータ) (2020-10-23T14:49:02Z) - Neural Subdivision [58.97214948753937]
本稿では,データ駆動型粗粒度モデリングの新しいフレームワークであるNeural Subdivisionを紹介する。
すべてのローカルメッシュパッチで同じネットワーク重みのセットを最適化するため、特定の入力メッシュや固定属、カテゴリに制約されないアーキテクチャを提供します。
単一の高分解能メッシュでトレーニングしても,本手法は新規な形状に対して合理的な区分を生成する。
論文 参考訳(メタデータ) (2020-05-04T20:03:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。