Federated Learning for Short-term Residential Energy Demand Forecasting
- URL: http://arxiv.org/abs/2105.13325v1
- Date: Thu, 27 May 2021 17:33:09 GMT
- Title: Federated Learning for Short-term Residential Energy Demand Forecasting
- Authors: Christopher Briggs, Zhong Fan, Peter Andras
- Abstract summary: Energy demand forecasting is an essential task performed within the energy industry to help balance supply with demand and maintain a stable load on the electricity grid.
As supply transitions towards less reliable renewable energy generation, smart meters will prove a vital component to aid these forecasting tasks.
However, smart meter take-up is low among privacy-conscious consumers that fear intrusion upon their fine-grained consumption data.
- Score: 4.769747792846004
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Energy demand forecasting is an essential task performed within the energy
industry to help balance supply with demand and maintain a stable load on the
electricity grid. As supply transitions towards less reliable renewable energy
generation, smart meters will prove a vital component to aid these forecasting
tasks. However, smart meter take-up is low among privacy-conscious consumers
that fear intrusion upon their fine-grained consumption data. In this work we
propose and explore a federated learning (FL) based approach for training
forecasting models in a distributed, collaborative manner whilst retaining the
privacy of the underlying data. We compare two approaches: FL, and a clustered
variant, FL+HC against a non-private, centralised learning approach and a fully
private, localised learning approach. Within these approaches, we measure model
performance using RMSE and computational efficiency via the number of samples
required to train models under each scenario. In addition, we suggest the FL
strategies are followed by a personalisation step and show that model
performance can be improved by doing so. We show that FL+HC followed by
personalisation can achieve a $\sim$5% improvement in model performance with a
$\sim$10x reduction in computation compared to localised learning. Finally we
provide advice on private aggregation of predictions for building a private
end-to-end energy demand forecasting application.
Related papers
- Electrical Load Forecasting in Smart Grid: A Personalized Federated Learning Approach [9.687203504689563]
Electric load forecasting is essential for power management and stability in smart grids.
Traditional machine learning (ML) methods are often employed for load forecasting but require data sharing.
Federated learning (FL) can address this issue by running distributed ML models at local SMs without data exchange.
arXiv Detail & Related papers (2024-11-15T22:44:50Z) - Addressing Heterogeneity in Federated Load Forecasting with Personalization Layers [3.933147844455233]
We propose the use of personalization layers for load forecasting in a general framework called PL-FL.
We show that PL-FL outperforms FL and purely local training, while requiring lower communication bandwidth than FL.
arXiv Detail & Related papers (2024-04-01T22:53:09Z) - Exploring the Privacy-Energy Consumption Tradeoff for Split Federated Learning [51.02352381270177]
Split Federated Learning (SFL) has recently emerged as a promising distributed learning technology.
The choice of the cut layer in SFL can have a substantial impact on the energy consumption of clients and their privacy.
This article provides a comprehensive overview of the SFL process and thoroughly analyze energy consumption and privacy.
arXiv Detail & Related papers (2023-11-15T23:23:42Z) - ZooPFL: Exploring Black-box Foundation Models for Personalized Federated
Learning [95.64041188351393]
This paper endeavors to solve both the challenges of limited resources and personalization.
We propose a method named ZOOPFL that uses Zeroth-Order Optimization for Personalized Federated Learning.
To reduce the computation costs and enhance personalization, we propose input surgery to incorporate an auto-encoder with low-dimensional and client-specific embeddings.
arXiv Detail & Related papers (2023-10-08T12:26:13Z) - FedWOA: A Federated Learning Model that uses the Whale Optimization
Algorithm for Renewable Energy Prediction [0.0]
This paper introduces FedWOA, a novel federated learning model that aggregate global prediction models from the weights of local neural network models trained on prosumer energy data.
The evaluation results on prosumers energy data have shown that FedWOA can effectively enhance the accuracy of energy prediction models accuracy by 25% for MSE and 16% for MAE compared to FedAVG.
arXiv Detail & Related papers (2023-09-19T05:44:18Z) - Personalized Federated Learning under Mixture of Distributions [98.25444470990107]
We propose a novel approach to Personalized Federated Learning (PFL), which utilizes Gaussian mixture models (GMM) to fit the input data distributions across diverse clients.
FedGMM possesses an additional advantage of adapting to new clients with minimal overhead, and it also enables uncertainty quantification.
Empirical evaluations on synthetic and benchmark datasets demonstrate the superior performance of our method in both PFL classification and novel sample detection.
arXiv Detail & Related papers (2023-05-01T20:04:46Z) - FedTrees: A Novel Computation-Communication Efficient Federated Learning
Framework Investigated in Smart Grids [8.437758224218648]
Next-generation smart meters can be used to measure, record, and report energy consumption data.
FedTrees is a new, lightweight FL framework that benefits from the outstanding features of ensemble learning.
arXiv Detail & Related papers (2022-09-30T19:47:46Z) - A Contract Theory based Incentive Mechanism for Federated Learning [52.24418084256517]
Federated learning (FL) serves as a data privacy-preserved machine learning paradigm, and realizes the collaborative model trained by distributed clients.
To accomplish an FL task, the task publisher needs to pay financial incentives to the FL server and FL server offloads the task to the contributing FL clients.
It is challenging to design proper incentives for the FL clients due to the fact that the task is privately trained by the clients.
arXiv Detail & Related papers (2021-08-12T07:30:42Z) - DER Forecast using Privacy Preserving Federated Learning [0.0]
A distributed machine learning approach, Federated Learning, is proposed to carry out DER forecasting using a network of IoT nodes.
We consider a simulation study which includes 1000 DERs, and show that our method leads to an accurate prediction of preserve consumer privacy.
arXiv Detail & Related papers (2021-07-07T14:25:43Z) - A Framework for Energy and Carbon Footprint Analysis of Distributed and
Federated Edge Learning [48.63610479916003]
This article breaks down and analyzes the main factors that influence the environmental footprint of distributed learning policies.
It models both vanilla and decentralized FL policies driven by consensus.
Results show that FL allows remarkable end-to-end energy savings (30%-40%) for wireless systems characterized by low bit/Joule efficiency.
arXiv Detail & Related papers (2021-03-18T16:04:42Z) - Demand-Side Scheduling Based on Multi-Agent Deep Actor-Critic Learning
for Smart Grids [56.35173057183362]
We consider the problem of demand-side energy management, where each household is equipped with a smart meter that is able to schedule home appliances online.
The goal is to minimize the overall cost under a real-time pricing scheme.
We propose the formulation of a smart grid environment as a Markov game.
arXiv Detail & Related papers (2020-05-05T07:32:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.