Electrical Load Forecasting in Smart Grid: A Personalized Federated Learning Approach
- URL: http://arxiv.org/abs/2411.10619v1
- Date: Fri, 15 Nov 2024 22:44:50 GMT
- Title: Electrical Load Forecasting in Smart Grid: A Personalized Federated Learning Approach
- Authors: Ratun Rahman, Neeraj Kumar, Dinh C. Nguyen,
- Abstract summary: Electric load forecasting is essential for power management and stability in smart grids.
Traditional machine learning (ML) methods are often employed for load forecasting but require data sharing.
Federated learning (FL) can address this issue by running distributed ML models at local SMs without data exchange.
- Score: 9.687203504689563
- License:
- Abstract: Electric load forecasting is essential for power management and stability in smart grids. This is mainly achieved via advanced metering infrastructure, where smart meters (SMs) are used to record household energy consumption. Traditional machine learning (ML) methods are often employed for load forecasting but require data sharing which raises data privacy concerns. Federated learning (FL) can address this issue by running distributed ML models at local SMs without data exchange. However, current FL-based approaches struggle to achieve efficient load forecasting due to imbalanced data distribution across heterogeneous SMs. This paper presents a novel personalized federated learning (PFL) method to load prediction under non-independent and identically distributed (non-IID) metering data settings. Specifically, we introduce meta-learning, where the learning rates are manipulated using the meta-learning idea to maximize the gradient for each client in each global round. Clients with varying processing capacities, data sizes, and batch sizes can participate in global model aggregation and improve their local load forecasting via personalized learning. Simulation results show that our approach outperforms state-of-the-art ML and FL methods in terms of better load forecasting accuracy.
Related papers
- FedMAP: Unlocking Potential in Personalized Federated Learning through Bi-Level MAP Optimization [11.040916982022978]
Federated Learning (FL) enables collaborative training of machine learning models on decentralized data.
Data across clients often differs significantly due to class imbalance, feature distribution skew, sample size imbalance, and other phenomena.
We propose a novel Bayesian PFL framework using bi-level optimization to tackle the data heterogeneity challenges.
arXiv Detail & Related papers (2024-05-29T11:28:06Z) - Exploring Lightweight Federated Learning for Distributed Load Forecasting [0.864902991835914]
Federated Learning (FL) is a distributed learning scheme that enables deep learning to be applied to sensitive data streams and applications in a privacy-preserving manner.
We show that with a lightweight fully connected deep neural network, we are able to achieve forecasting accuracy comparable to existing schemes.
arXiv Detail & Related papers (2024-04-04T09:35:48Z) - Addressing Heterogeneity in Federated Load Forecasting with Personalization Layers [3.933147844455233]
We propose the use of personalization layers for load forecasting in a general framework called PL-FL.
We show that PL-FL outperforms FL and purely local training, while requiring lower communication bandwidth than FL.
arXiv Detail & Related papers (2024-04-01T22:53:09Z) - Secure short-term load forecasting for smart grids with
transformer-based federated learning [0.0]
Electricity load forecasting is an essential task within smart grids to assist demand and supply balance.
Fine-grained load profiles can expose users' electricity consumption behaviors, which raises privacy and security concerns.
This paper presents a novel transformer-based deep learning approach with federated learning for short-term electricity load prediction.
arXiv Detail & Related papers (2023-10-26T15:27:55Z) - Personalized Federated Learning under Mixture of Distributions [98.25444470990107]
We propose a novel approach to Personalized Federated Learning (PFL), which utilizes Gaussian mixture models (GMM) to fit the input data distributions across diverse clients.
FedGMM possesses an additional advantage of adapting to new clients with minimal overhead, and it also enables uncertainty quantification.
Empirical evaluations on synthetic and benchmark datasets demonstrate the superior performance of our method in both PFL classification and novel sample detection.
arXiv Detail & Related papers (2023-05-01T20:04:46Z) - Automated Federated Learning in Mobile Edge Networks -- Fast Adaptation
and Convergence [83.58839320635956]
Federated Learning (FL) can be used in mobile edge networks to train machine learning models in a distributed manner.
Recent FL has been interpreted within a Model-Agnostic Meta-Learning (MAML) framework, which brings FL significant advantages in fast adaptation and convergence over heterogeneous datasets.
This paper addresses how much benefit MAML brings to FL and how to maximize such benefit over mobile edge networks.
arXiv Detail & Related papers (2023-03-23T02:42:10Z) - Federated Learning and Meta Learning: Approaches, Applications, and
Directions [94.68423258028285]
In this tutorial, we present a comprehensive review of FL, meta learning, and federated meta learning (FedMeta)
Unlike other tutorial papers, our objective is to explore how FL, meta learning, and FedMeta methodologies can be designed, optimized, and evolved, and their applications over wireless networks.
arXiv Detail & Related papers (2022-10-24T10:59:29Z) - Acceleration of Federated Learning with Alleviated Forgetting in Local
Training [61.231021417674235]
Federated learning (FL) enables distributed optimization of machine learning models while protecting privacy.
We propose FedReg, an algorithm to accelerate FL with alleviated knowledge forgetting in the local training stage.
Our experiments demonstrate that FedReg not only significantly improves the convergence rate of FL, especially when the neural network architecture is deep.
arXiv Detail & Related papers (2022-03-05T02:31:32Z) - Federated Stochastic Gradient Descent Begets Self-Induced Momentum [151.4322255230084]
Federated learning (FL) is an emerging machine learning method that can be applied in mobile edge systems.
We show that running to the gradient descent (SGD) in such a setting can be viewed as adding a momentum-like term to the global aggregation process.
arXiv Detail & Related papers (2022-02-17T02:01:37Z) - Local Learning Matters: Rethinking Data Heterogeneity in Federated
Learning [61.488646649045215]
Federated learning (FL) is a promising strategy for performing privacy-preserving, distributed learning with a network of clients (i.e., edge devices)
arXiv Detail & Related papers (2021-11-28T19:03:39Z) - Continual Local Training for Better Initialization of Federated Models [14.289213162030816]
Federated learning (FL) refers to the learning paradigm that trains machine learning models directly in decentralized systems.
The popular FL algorithm emphFederated Averaging (FedAvg) suffers from weight divergence.
We propose the local continual training strategy to address this problem.
arXiv Detail & Related papers (2020-05-26T12:27:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.