Engineering fast bias-preserving gates on stabilized cat qubits
- URL: http://arxiv.org/abs/2105.13908v1
- Date: Fri, 28 May 2021 15:20:21 GMT
- Title: Engineering fast bias-preserving gates on stabilized cat qubits
- Authors: Qian Xu, Joseph K Iverson, Fernando G.S.L. Brandao, Liang Jiang
- Abstract summary: bias-preserving gates can significantly reduce resource overhead for fault-tolerant quantum computing.
In this work, we apply a derivative-based leakage suppression technique to overcome non-adiabatic errors.
- Score: 64.20602234702581
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Stabilized cat codes can provide a biased noise channel with a set of
bias-preserving (BP) gates, which can significantly reduce the resource
overhead for fault-tolerant quantum computing. All existing schemes of BP
gates, however, require adiabatic quantum evolution, with performance limited
by excitation loss and non-adiabatic errors during the adiabatic gates. In this
work, we apply a derivative-based leakage suppression technique to overcome
non-adiabatic errors, so that we can implement fast BP gates on Kerr-cat qubits
with improved gate fidelity while maintaining high noise bias. When applied to
concatenated quantum error correction, the fast BP gates can not only improve
the logical error rate but also reduce resource overhead, which enables more
efficient implementation of fault-tolerant quantum computing.
Related papers
- Suppressing Counter-Rotating Errors for Fast Single-Qubit Gates with Fluxonium [0.19878563004214328]
Qubit decoherence unavoidably degrades the fidelity of quantum logic gates.
One such error channel arises from the counter-rotating component of strong, linearly polarized drives.
We develop and demonstrate two complementary protocols for mitigating this error channel.
arXiv Detail & Related papers (2024-06-12T14:58:08Z) - Fault-tolerant quantum computation using large spin cat-codes [0.8640652806228457]
We construct a fault-tolerant quantum error-correcting protocol based on a qubit encoded in a large spin qudit using a spin-cat code.
We show how to generate a universal gate set, including the rank-preserving CNOT gate, using quantum control and the Rydberg blockade.
These findings pave the way for encoding a qubit in a large spin with the potential to achieve fault tolerance, high threshold, and reduced resource overhead in quantum information processing.
arXiv Detail & Related papers (2024-01-08T22:56:05Z) - Fault-tolerant quantum architectures based on erasure qubits [49.227671756557946]
We exploit the idea of erasure qubits, relying on an efficient conversion of the dominant noise into erasures at known locations.
We propose and optimize QEC schemes based on erasure qubits and the recently-introduced Floquet codes.
Our results demonstrate that, despite being slightly more complex, QEC schemes based on erasure qubits can significantly outperform standard approaches.
arXiv Detail & Related papers (2023-12-21T17:40:18Z) - Shortcut-to-Adiabatic Controlled-Phase Gate in Rydberg Atoms [0.0]
A shortcut-to-adiabatic protocol for the realization of a fast and high-fidelity controlled-phase gate in Rydberg atoms is developed.
The adiabatic state transfer, driven in the high-blockade limit, is sped up by compensating nonadiabatic transitions via oscillating fields.
As an application toward quantum algorithms, how the fidelity of the gate impacts the efficiency of a minimal quantum-error correction circuit is analyzed.
arXiv Detail & Related papers (2023-12-18T16:58:31Z) - Fast Flux-Activated Leakage Reduction for Superconducting Quantum
Circuits [84.60542868688235]
leakage out of the computational subspace arising from the multi-level structure of qubit implementations.
We present a resource-efficient universal leakage reduction unit for superconducting qubits using parametric flux modulation.
We demonstrate that using the leakage reduction unit in repeated weight-two stabilizer measurements reduces the total number of detected errors in a scalable fashion.
arXiv Detail & Related papers (2023-09-13T16:21:32Z) - Deep Quantum Error Correction [73.54643419792453]
Quantum error correction codes (QECC) are a key component for realizing the potential of quantum computing.
In this work, we efficiently train novel emphend-to-end deep quantum error decoders.
The proposed method demonstrates the power of neural decoders for QECC by achieving state-of-the-art accuracy.
arXiv Detail & Related papers (2023-01-27T08:16:26Z) - Quantum error correction with dissipatively stabilized squeezed cat
qubits [68.8204255655161]
We propose and analyze the error correction performance of a dissipatively stabilized squeezed cat qubit.
We find that for moderate squeezing the bit-flip error rate gets significantly reduced in comparison with the ordinary cat qubit while leaving the phase flip rate unchanged.
arXiv Detail & Related papers (2022-10-24T16:02:20Z) - Construction of Bias-preserving Operations for Pair-cat Code [17.34207569961146]
Multi-level systems can achieve a desirable set of bias-preserving quantum operations.
Cat codes are not compatible with continuous quantum error correction against excitation loss error.
We generalize the bias-preserving operations to pair-cat codes to be compatible with continuous quantum error correction against both bosonic loss and dephasing errors.
arXiv Detail & Related papers (2022-08-14T20:45:26Z) - Software mitigation of coherent two-qubit gate errors [55.878249096379804]
Two-qubit gates are important components of quantum computing.
But unwanted interactions between qubits (so-called parasitic gates) can degrade the performance of quantum applications.
We present two software methods to mitigate parasitic two-qubit gate errors.
arXiv Detail & Related papers (2021-11-08T17:37:27Z) - Noncyclic Geometric Quantum Gates with Smooth Paths via Invariant-based
Shortcuts [4.354697470999286]
We propose a scheme to realize geometric quantum gates with noncyclic and nonadiabatic evolution via invariant-based shortcuts.
Our scheme provides a promising way to realize high-fidelity fault-tolerant quantum gates for scalable quantum computation.
arXiv Detail & Related papers (2021-02-01T15:05:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.