Fault-tolerant quantum computation using large spin cat-codes
- URL: http://arxiv.org/abs/2401.04271v4
- Date: Tue, 11 Jun 2024 18:18:00 GMT
- Title: Fault-tolerant quantum computation using large spin cat-codes
- Authors: Sivaprasad Omanakuttan, Vikas Buchemmavari, Jonathan A. Gross, Ivan H Deutsch, Milad Marvian,
- Abstract summary: We construct a fault-tolerant quantum error-correcting protocol based on a qubit encoded in a large spin qudit using a spin-cat code.
We show how to generate a universal gate set, including the rank-preserving CNOT gate, using quantum control and the Rydberg blockade.
These findings pave the way for encoding a qubit in a large spin with the potential to achieve fault tolerance, high threshold, and reduced resource overhead in quantum information processing.
- Score: 0.8640652806228457
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: We construct a fault-tolerant quantum error-correcting protocol based on a qubit encoded in a large spin qudit using a spin-cat code, analogous to the continuous variable cat encoding. With this, we can correct the dominant error sources, namely processes that can be expressed as error operators that are linear or quadratic in the components of angular momentum. Such codes tailored to dominant error sources {can} exhibit superior thresholds and lower resource overheads when compared to those designed for unstructured noise models. To preserve the dominant errors during gate operations, we identify a suitable universal gate set. A key component is the CNOT gate that preserves the rank of spherical tensor operators. Categorizing the dominant errors as phase and amplitude errors, we demonstrate how phase errors, analogous to phase-flip errors for qubits, can be effectively corrected. Furthermore, we propose a measurement-free error correction scheme to address amplitude errors without relying on syndrome measurements. Through an in-depth analysis of logical CNOT gate errors, we establish that the fault-tolerant threshold for error correction in the spin-cat encoding surpasses that of standard qubit-based encodings. We consider a specific implementation based on neutral-atom quantum computing, with qudits encoded in the nuclear spin of $^{87}$Sr, and show how to generate the universal gate set, including the rank-preserving CNOT gate, using quantum control and the Rydberg blockade. These findings pave the way for encoding a qubit in a large spin with the potential to achieve fault tolerance, high threshold, and reduced resource overhead in quantum information processing.
Related papers
- Analysis of Maximum Threshold and Quantum Security for Fault-Tolerant
Encoding and Decoding Scheme Base on Steane Code [10.853582091917236]
The original Steane code is not fault-tolerant because the CNOT gates in an encoded block may cause error propagation.
We first propose a fault-tolerant encoding and decoding scheme, which analyzes all possible errors caused by each quantum gate in an error-correction period.
We then provide the fault-tolerant scheme of the universal quantum gate set, including fault-tolerant preparation and verification of ancillary states.
arXiv Detail & Related papers (2024-03-07T07:46:03Z) - Hamiltonian Phase Error in Resonantly Driven CNOT Gate Above the
Fault-Tolerant Threshold [0.0]
electron spin qubits are a promising platform for scalable quantum processors.
A full-fledged quantum computer will need quantum error correction, which requires high-fidelity quantum gates.
We demonstrate a simple yet reliable calibration procedure for a high-fidelity controlled-rotation gate in an exchange-always-on Silicon quantum processor.
arXiv Detail & Related papers (2023-07-18T07:44:00Z) - The END: An Equivariant Neural Decoder for Quantum Error Correction [73.4384623973809]
We introduce a data efficient neural decoder that exploits the symmetries of the problem.
We propose a novel equivariant architecture that achieves state of the art accuracy compared to previous neural decoders.
arXiv Detail & Related papers (2023-04-14T19:46:39Z) - Deep Quantum Error Correction [73.54643419792453]
Quantum error correction codes (QECC) are a key component for realizing the potential of quantum computing.
In this work, we efficiently train novel emphend-to-end deep quantum error decoders.
The proposed method demonstrates the power of neural decoders for QECC by achieving state-of-the-art accuracy.
arXiv Detail & Related papers (2023-01-27T08:16:26Z) - Transversal Injection: A method for direct encoding of ancilla states
for non-Clifford gates using stabiliser codes [55.90903601048249]
We introduce a protocol to potentially reduce this overhead for non-Clifford gates.
Preliminary results hint at high quality fidelities at larger distances.
arXiv Detail & Related papers (2022-11-18T06:03:10Z) - Construction of Bias-preserving Operations for Pair-cat Code [17.34207569961146]
Multi-level systems can achieve a desirable set of bias-preserving quantum operations.
Cat codes are not compatible with continuous quantum error correction against excitation loss error.
We generalize the bias-preserving operations to pair-cat codes to be compatible with continuous quantum error correction against both bosonic loss and dephasing errors.
arXiv Detail & Related papers (2022-08-14T20:45:26Z) - Erasure conversion for fault-tolerant quantum computing in alkaline
earth Rydberg atom arrays [3.575043595126111]
We propose a qubit encoding and gate protocol for $171$Yb neutral atom qubits that converts the dominant physical errors into erasures.
We estimate that 98% of errors can be converted into erasures.
arXiv Detail & Related papers (2022-01-10T18:56:31Z) - Performance of teleportation-based error correction circuits for bosonic
codes with noisy measurements [58.720142291102135]
We analyze the error-correction capabilities of rotation-symmetric codes using a teleportation-based error-correction circuit.
We find that with the currently achievable measurement efficiencies in microwave optics, bosonic rotation codes undergo a substantial decrease in their break-even potential.
arXiv Detail & Related papers (2021-08-02T16:12:13Z) - Fault-tolerant parity readout on a shuttling-based trapped-ion quantum
computer [64.47265213752996]
We experimentally demonstrate a fault-tolerant weight-4 parity check measurement scheme.
We achieve a flag-conditioned parity measurement single-shot fidelity of 93.2(2)%.
The scheme is an essential building block in a broad class of stabilizer quantum error correction protocols.
arXiv Detail & Related papers (2021-07-13T20:08:04Z) - Engineering fast bias-preserving gates on stabilized cat qubits [64.20602234702581]
bias-preserving gates can significantly reduce resource overhead for fault-tolerant quantum computing.
In this work, we apply a derivative-based leakage suppression technique to overcome non-adiabatic errors.
arXiv Detail & Related papers (2021-05-28T15:20:21Z) - Fault-Tolerant Operation of a Quantum Error-Correction Code [1.835073691235972]
Quantum error correction protects fragile quantum information by encoding it into a larger quantum system.
Fault-tolerant circuits contain the spread of errors while operating the logical qubit.
We show that fault-tolerant circuits enable highly accurate logical primitives in current quantum systems.
arXiv Detail & Related papers (2020-09-24T04:31:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.