論文の概要: Improving Generalization in Mountain Car Through the Partitioned
Parameterized Policy Approach via Quasi-Stochastic Gradient Descent
- arxiv url: http://arxiv.org/abs/2105.13986v1
- Date: Fri, 28 May 2021 17:11:10 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-31 13:47:10.415752
- Title: Improving Generalization in Mountain Car Through the Partitioned
Parameterized Policy Approach via Quasi-Stochastic Gradient Descent
- Title(参考訳): 準確率勾配線による分割パラメータ化政策アプローチによるマウンテンカーの一般化改善
- Authors: Caleb M. Bowyer
- Abstract要約: マウンテンカー環境の最小時間目標を最小限に抑える制御ポリシーを見つけることによる強化学習の課題を考察する。
パラメータ化された非線形フィードバックポリシのクラスを最適化し、最小時間で最高峰の頂上に到達する。
状態空間の異なる領域に対して最適なポリシーパラメータを学習しようとする新しいパラメータ化ポリシーアプローチが検討されている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The reinforcement learning problem of finding a control policy that minimizes
the minimum time objective for the Mountain Car environment is considered.
Particularly, a class of parameterized nonlinear feedback policies is optimized
over to reach the top of the highest mountain peak in minimum time. The
optimization is carried out using quasi-Stochastic Gradient Descent (qSGD)
methods. In attempting to find the optimal minimum time policy, a new
parameterized policy approach is considered that seeks to learn an optimal
policy parameter for different regions of the state space, rather than rely on
a single macroscopic policy parameter for the entire state space. This
partitioned parameterized policy approach is shown to outperform the uniform
parameterized policy approach and lead to greater generalization than prior
methods, where the Mountain Car became trapped in circular trajectories in the
state space.
- Abstract(参考訳): マウンテンカー環境の最小時間目標を最小限に抑える制御ポリシーを見つけることによる強化学習の課題を考察する。
特に,パラメータ化された非線形フィードバックポリシのクラスを最適化して,最低時間で最高峰の頂上に到達する。
準確率勾配 Descent (qSGD) 法を用いて最適化を行う。
最適な最小時間ポリシーを見つけるために、状態空間全体のマクロなポリシーパラメータに頼るのではなく、状態空間の異なる領域に対する最適なポリシーパラメータを学習しようとする新しいパラメータ化されたポリシーアプローチが検討されている。
この分割パラメータ化ポリシーアプローチは、一様パラメータ化ポリシーアプローチよりも優れており、以前の方法よりも一般化され、マウンテンカーは州空間の循環軌道に閉じ込められた。
関連論文リスト
- Deterministic Policy Gradient Primal-Dual Methods for Continuous-Space Constrained MDPs [82.34567890576423]
我々は,非漸近収束を伴う最適決定主義政策を求めるための決定主義的政策勾配原始双対法を開発した。
D-PGPDの一次-双対反復は、最適正則化原始-双対にサブ線形速度で収束することが証明された。
我々の知る限り、これは連続空間制約型MDPに対する決定論的ポリシー探索法を提案する最初の研究であると思われる。
論文 参考訳(メタデータ) (2024-08-19T14:11:04Z) - Fast Policy Learning for Linear Quadratic Control with Entropy
Regularization [10.771650397337366]
本稿では,レギュラー化政策勾配 (RPG) と反復政策最適化 (IPO) の2つの新しい政策学習手法を提案し,分析する。
正確な政策評価にアクセスできると仮定すると、どちらの手法も正規化されたLQCの最適ポリシーを見つける際に線形に収束することが証明される。
論文 参考訳(メタデータ) (2023-11-23T19:08:39Z) - Reparameterized Policy Learning for Multimodal Trajectory Optimization [61.13228961771765]
本研究では,高次元連続行動空間における強化学習のためのパラメータ化政策の課題について検討する。
本稿では,連続RLポリシーを最適軌道の生成モデルとしてモデル化する原理的フレームワークを提案する。
本稿では,マルチモーダルポリシーパラメータ化と学習世界モデルを活用した実用的モデルベースRL手法を提案する。
論文 参考訳(メタデータ) (2023-07-20T09:05:46Z) - Last-Iterate Convergent Policy Gradient Primal-Dual Methods for
Constrained MDPs [107.28031292946774]
無限水平割引マルコフ決定過程(拘束型MDP)の最適ポリシの計算問題について検討する。
我々は, 最適制約付きポリシーに反復的に対応し, 非漸近収束性を持つ2つの単一スケールポリシーに基づく原始双対アルゴリズムを開発した。
我々の知る限り、この研究は制約付きMDPにおける単一時間スケールアルゴリズムの非漸近的な最後の収束結果となる。
論文 参考訳(メタデータ) (2023-06-20T17:27:31Z) - Acceleration in Policy Optimization [50.323182853069184]
我々は、楽観的かつ適応的な更新を通じて、政策改善のステップにフォレストを組み込むことにより、強化学習(RL)における政策最適化手法を加速するための統一パラダイムに向けて研究する。
我々は、楽観主義を、政策の将来行動の予測モデルとして定義し、適応性は、過度な予測や変化に対する遅延反応からエラーを軽減するために、即時かつ予測的な修正措置をとるものである。
我々は,メタグラディエント学習による適応型楽観的ポリシー勾配アルゴリズムを設計し,実証的なタスクにおいて,加速度に関連するいくつかの設計選択を実証的に強調する。
論文 参考訳(メタデータ) (2023-06-18T15:50:57Z) - Memory-Constrained Policy Optimization [59.63021433336966]
政策勾配強化学習のための制約付き最適化手法を提案する。
我々は、過去の幅広い政策を表す別の仮想ポリシーの構築を通じて、第2の信頼領域を形成します。
そして、我々は、新しいポリシーをバーチャルポリシーに近づき続けるよう強制する。
論文 参考訳(メタデータ) (2022-04-20T08:50:23Z) - Optimistic Policy Optimization is Provably Efficient in Non-stationary
MDPs [45.6318149525364]
非定常線形カーネルマルコフ決定過程(MDP)におけるエピソード強化学習(RL)の研究
本稿では,$underlinetextp$eriodically $underlinetextr$estarted $underlinetexto$ptimistic $underlinetextp$olicy $underlinetexto$ptimization algorithm (PROPO)を提案する。
論文 参考訳(メタデータ) (2021-10-18T02:33:20Z) - MPC-based Reinforcement Learning for Economic Problems with Application
to Battery Storage [0.0]
モデル予測制御(MPC)に基づく政策近似に焦点を当てます。
政策勾配法は,政策が(ほぼ)バンバン構造を持つ場合,政策パラメータに意味のあるステップを生じさせることに苦慮する。
本稿では,内点法に基づくホモトピー戦略を提案し,学習中に方針を緩和する。
論文 参考訳(メタデータ) (2021-04-06T10:37:14Z) - Near Optimal Policy Optimization via REPS [33.992374484681704]
emphrelative entropy policy search (reps) は多くのシミュレーションと実世界のロボットドメインでポリシー学習に成功した。
勾配に基づく解法を用いる場合、REPSの性能には保証がない。
最適規則化ポリシーに好適な収束を維持するためのパラメータ更新を計算するために,基礎となる決定プロセスへの表現的アクセスを利用する手法を提案する。
論文 参考訳(メタデータ) (2021-03-17T16:22:59Z) - Stable Policy Optimization via Off-Policy Divergence Regularization [50.98542111236381]
信頼地域政策最適化(TRPO)とPPO(Pximal Policy Optimization)は、深層強化学習(RL)において最も成功した政策勾配アプローチの一つである。
本稿では, 連続的な政策によって引き起こされる割引状態-行動訪問分布を, 近接項で抑制し, 政策改善を安定化させる新しいアルゴリズムを提案する。
提案手法は, ベンチマーク高次元制御タスクの安定性と最終的な性能向上に有効である。
論文 参考訳(メタデータ) (2020-03-09T13:05:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。