論文の概要: Fair Representations by Compression
- arxiv url: http://arxiv.org/abs/2105.14044v1
- Date: Fri, 28 May 2021 18:22:07 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-06 03:25:37.302172
- Title: Fair Representations by Compression
- Title(参考訳): 圧縮による公平表現
- Authors: Xavier Gitiaux, Huzefa Rangwala
- Abstract要約: そこで本研究では,デコーダに直接提供された場合,擬似表現はセンシティブな属性に関する情報をフィルタリングすべきであることを示す。
表現ビットストリームのエントロピーの明示的な制御により、ユーザはレート歪みとレートフェアネス曲線の両方に沿って、スムーズかつ同時に動くことができる。
- 参考スコア(独自算出の注目度): 19.26754855778295
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Organizations that collect and sell data face increasing scrutiny for the
discriminatory use of data. We propose a novel unsupervised approach to
transform data into a compressed binary representation independent of sensitive
attributes. We show that in an information bottleneck framework, a parsimonious
representation should filter out information related to sensitive attributes if
they are provided directly to the decoder. Empirical results show that the
proposed method, \textbf{FBC}, achieves state-of-the-art accuracy-fairness
trade-off. Explicit control of the entropy of the representation bit stream
allows the user to move smoothly and simultaneously along both rate-distortion
and rate-fairness curves. \end{abstract}
- Abstract(参考訳): データの収集と販売を行う組織は、データの差別的利用に対する精査が増えている。
本研究では,機密属性に依存しない圧縮バイナリ表現へ変換する新しい教師なし手法を提案する。
情報ボトルネックの枠組みでは,機密属性に関する情報をデコーダに直接提供した場合,情報表現がフィルタリングすべきであることを示す。
実験の結果,提案手法は最先端の精度・公正トレードオフを実現する。
表現ビットストリームのエントロピーの明示的な制御により、ユーザはレート歪みとレートフェアネス曲線の両方に沿ってスムーズに同時に移動することができる。
\end{abstract}
関連論文リスト
- Provable Optimization for Adversarial Fair Self-supervised Contrastive Learning [49.417414031031264]
本稿では,自己教師型学習環境におけるフェアエンコーダの学習について検討する。
すべてのデータはラベル付けされておらず、そのごく一部だけが機密属性で注釈付けされている。
論文 参考訳(メタデータ) (2024-06-09T08:11:12Z) - Closed-Loop Unsupervised Representation Disentanglement with $\beta$-VAE
Distillation and Diffusion Probabilistic Feedback [45.68054456449699]
表現の混乱は、AIが現実世界を根本的に理解し、差別と生成の両方に利益をもたらす可能性がある。
我々はtextbfCL-Dis と呼ばれる textbfCL-Disentanglement アプローチを提案する。
実画像操作や視覚解析といったアプリケーションにおけるCL-Disの優位性を示す実験がある。
論文 参考訳(メタデータ) (2024-02-04T05:03:22Z) - Disentangled Representation Learning with Transmitted Information Bottleneck [57.22757813140418]
textbfDisTIB (textbfTransmitted textbfInformation textbfBottleneck for textbfDisd representation learning) は情報圧縮と保存のバランスを保った新しい目的である。
論文 参考訳(メタデータ) (2023-11-03T03:18:40Z) - FedCiR: Client-Invariant Representation Learning for Federated Non-IID
Features [15.555538379806135]
Federated Learning(FL)は、エッジデバイスのデータ駆動モデルの可能性を、生データを共有せずに最大化する分散学習パラダイムである。
我々は、クライアントが情報やクライアントの不変性を抽出できるクライアント不変表現学習フレームワークであるFedCiRを提案する。
論文 参考訳(メタデータ) (2023-08-30T06:36:32Z) - Fair-CDA: Continuous and Directional Augmentation for Group Fairness [48.84385689186208]
公正な制約を課すための詳細なデータ拡張戦略を提案する。
グループ間の感性のある特徴の遷移経路のモデルを正規化することにより、グループフェアネスを実現することができることを示す。
提案手法はデータ生成モデルを仮定せず,精度と公平性の両方に優れた一般化を実現する。
論文 参考訳(メタデータ) (2023-04-01T11:23:00Z) - Disentangling representations in Restricted Boltzmann Machines without
adversaries [0.0]
本稿では, 敵対的差別者を訓練することなく, 簡易かつ効果的に表現を分離する方法を提案する。
当社のフレームワークが,データのログライクな表現によってコストを計算可能にする方法を示す。
論文 参考訳(メタデータ) (2022-06-23T10:24:20Z) - Semi-FairVAE: Semi-supervised Fair Representation Learning with
Adversarial Variational Autoencoder [92.67156911466397]
逆変分オートエンコーダに基づく半教師付き公正表現学習手法を提案する。
我々は、バイアス認識モデルを用いて、機密属性の固有バイアス情報をキャプチャする。
また、偏見のないモデルを用いて、対立学習を用いて偏見情報を取り除き、偏見のない公正表現を学習する。
論文 参考訳(メタデータ) (2022-04-01T15:57:47Z) - Semi-supervised Long-tailed Recognition using Alternate Sampling [95.93760490301395]
ロングテール認識の主な課題は、データ分布の不均衡とテールクラスにおけるサンプル不足である。
半教師付き長尾認識という新しい認識設定を提案する。
2つのデータセットで、他の競合方法よりも大幅な精度向上を実証します。
論文 参考訳(メタデータ) (2021-05-01T00:43:38Z) - Negative Data Augmentation [127.28042046152954]
負のデータ拡張サンプルは、データ分散のサポートに関する情報を提供することを示す。
我々は、NDAを識別器の合成データの追加源として利用する新しいGAN訓練目標を提案する。
実験により,本手法で訓練したモデルでは,異常検出能力の向上とともに条件付き・条件付き画像生成の改善を実現している。
論文 参考訳(メタデータ) (2021-02-09T20:28:35Z) - Learning Smooth and Fair Representations [24.305894478899948]
本稿では,特徴量と感性属性との相関関係を,公平な表現空間にマッピングすることで事前に除去する能力について検討する。
実験により,表現分布の平滑化は公平性証明の一般化保証を提供することがわかった。
表現分布の平滑化は、表現学習における最先端手法と比較して下流タスクの精度を低下させるものではない。
論文 参考訳(メタデータ) (2020-06-15T21:51:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。