論文の概要: 3D U-NetR: Low Dose Computed Tomography Reconstruction via Deep Learning
and 3 Dimensional Convolutions
- arxiv url: http://arxiv.org/abs/2105.14130v1
- Date: Fri, 28 May 2021 22:37:50 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-01 17:00:29.637267
- Title: 3D U-NetR: Low Dose Computed Tomography Reconstruction via Deep Learning
and 3 Dimensional Convolutions
- Title(参考訳): 3d u-netr: 深層学習と3次元畳み込みによる低線量ct再構成
- Authors: Doga Gunduzalp, Batuhan Cengiz, Mehmet Ozan Unal, Isa Yildirim
- Abstract要約: 3D U-NetRは、2Dネットワークでは可視化できない、医療的に重要な視覚的詳細をキャプチャする。
さらに重要なのは、3D U-NetRは、2Dネットワークで可視化できない、医療的に重要な視覚的詳細をキャプチャする。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we introduced a novel deep learning based reconstruction
technique using the correlations of all 3 dimensions with each other by taking
into account the correlation between 2-dimensional low-dose CT images. Sparse
or noisy sinograms are back projected to the image domain with FBP operation,
then denoising process is applied with a U-Net like 3 dimensional network
called 3D U-NetR. Proposed network is trained with synthetic and real chest CT
images, and 2D U-Net is also trained with the same dataset to prove the
importance of the 3rd dimension. Proposed network shows better quantitative
performance on SSIM and PSNR. More importantly, 3D U-NetR captures medically
critical visual details that cannot be visualized by 2D network.
- Abstract(参考訳): 本稿では,2次元低線量CT画像の相関を考慮し,すべての3次元の相関関係を用いた新しい深層学習に基づく再構成手法を提案する。
スパース・ノイズ・シングラムはFBP操作で画像領域に投影され、3D U-NetRと呼ばれるU-Netのような3次元ネットワークで復調処理が適用される。
提案するネットワークは合成および実際の胸部CT画像で訓練され、2D U-Netは3次元の重要性を証明するために同じデータセットで訓練される。
提案するネットワークは、SSIMとPSNRでより定量的な性能を示す。
さらに重要なのは、3D U-NetRは、2Dネットワークで可視化できない、医療的に重要な視覚的詳細をキャプチャする。
関連論文リスト
- Swap-Net: A Memory-Efficient 2.5D Network for Sparse-View 3D Cone Beam CT Reconstruction [13.891441371598546]
プロジェクションの限られたセットから3次元コーンビーム計算トモグラフィ(CBCT)画像の再構成は、多くの画像応用において逆問題である。
本稿では,スパースビュー3次元CBCT画像再構成のためのメモリ効率2.5DネットワークであるSwap-Netを提案する。
論文 参考訳(メタデータ) (2024-09-29T08:36:34Z) - SeMLaPS: Real-time Semantic Mapping with Latent Prior Networks and
Quasi-Planar Segmentation [53.83313235792596]
本稿では,RGB-Dシーケンスからのリアルタイム意味マッピングのための新しい手法を提案する。
2DニューラルネットワークとSLAMシステムに基づく3Dネットワークと3D占有マッピングを組み合わせる。
本システムは,2D-3Dネットワークベースシステムにおいて,最先端のセマンティックマッピング品質を実現する。
論文 参考訳(メタデータ) (2023-06-28T22:36:44Z) - Decomposing 3D Neuroimaging into 2+1D Processing for Schizophrenia
Recognition [25.80846093248797]
我々は2+1Dフレームワークで3Dデータを処理し、巨大なImageNetデータセット上に事前トレーニングされた強力な2D畳み込みニューラルネットワーク(CNN)ネットワークを利用して3Dニューロイメージング認識を実現することを提案する。
特に3次元磁気共鳴イメージング(MRI)の計測値は、隣接するボクセル位置に応じて2次元スライスに分解される。
グローバルプーリングは、アクティベーションパターンが機能マップ上にわずかに分散されているため、冗長な情報を除去するために適用される。
2次元CNNモデルにより処理されていない3次元の文脈情報を集約するために,チャネルワイドおよびスライスワイズ畳み込みを提案する。
論文 参考訳(メタデータ) (2022-11-21T15:22:59Z) - GraphCSPN: Geometry-Aware Depth Completion via Dynamic GCNs [49.55919802779889]
本稿では,グラフ畳み込みに基づく空間伝搬ネットワーク(GraphCSPN)を提案する。
本研究では、幾何学的表現学習において、畳み込みニューラルネットワークとグラフニューラルネットワークを相補的に活用する。
提案手法は,数段の伝搬ステップのみを使用する場合と比較して,最先端の性能を実現する。
論文 参考訳(メタデータ) (2022-10-19T17:56:03Z) - Super Images -- A New 2D Perspective on 3D Medical Imaging Analysis [0.0]
トレーニング中に3次元知識を効率的に埋め込んで3次元データを扱うための,シンプルで効果的な2次元手法を提案する。
本手法は3次元画像にスライスを並べて超高分解能画像を生成する。
2次元ネットワークのみを利用した3次元ネットワークを実現する一方で、モデルの複雑さはおよそ3倍に減少する。
論文 参考訳(メタデータ) (2022-05-05T09:59:03Z) - 3DVNet: Multi-View Depth Prediction and Volumetric Refinement [68.68537312256144]
3DVNetは、新しいマルチビューステレオ(MVS)深度予測法である。
私たちのキーとなるアイデアは、粗い深度予測を反復的に更新する3Dシーンモデリングネットワークを使用することです。
本手法は, 深度予測と3次元再構成の両指標において, 最先端の精度を超えることを示す。
論文 参考訳(メタデータ) (2021-12-01T00:52:42Z) - VolumeFusion: Deep Depth Fusion for 3D Scene Reconstruction [71.83308989022635]
本稿では、ディープニューラルネットワークを用いた従来の2段階フレームワークの複製により、解釈可能性と結果の精度が向上することを提唱する。
ネットワークは,1)深部MVS技術を用いた局所深度マップの局所計算,2)深部マップと画像の特徴を融合させて単一のTSDFボリュームを構築する。
異なる視点から取得した画像間のマッチング性能を改善するために,PosedConvと呼ばれる回転不変な3D畳み込みカーネルを導入する。
論文 参考訳(メタデータ) (2021-08-19T11:33:58Z) - R2U3D: Recurrent Residual 3D U-Net for Lung Segmentation [17.343802171952195]
本稿では,3次元肺分割作業のための新しいモデルであるRecurrent Residual 3D U-Net(R2U3D)を提案する。
特に,提案モデルでは,U-Netに基づくRecurrent Residual Neural Networkに3次元畳み込みを組み込む。
提案するR2U3Dネットワークは、公開データセットLUNA16に基づいてトレーニングされ、最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2021-05-05T19:17:14Z) - 3D-to-2D Distillation for Indoor Scene Parsing [78.36781565047656]
大規模3次元データリポジトリから抽出した3次元特徴を有効活用し,RGB画像から抽出した2次元特徴を向上する手法を提案する。
まず,事前学習した3Dネットワークから3D知識を抽出して2Dネットワークを監督し,トレーニング中の2D特徴からシミュレーションされた3D特徴を学習する。
次に,2次元の正規化方式を設計し,2次元特徴と3次元特徴のキャリブレーションを行った。
第3に,非ペアの3dデータを用いたトレーニングのフレームワークを拡張するために,意味を意識した対向的トレーニングモデルを設計した。
論文 参考訳(メタデータ) (2021-04-06T02:22:24Z) - Learning Joint 2D-3D Representations for Depth Completion [90.62843376586216]
2Dおよび3Dの関節の特徴を抽出することを学ぶシンプルで効果的なニューラルネットワークブロックを設計します。
具体的には、画像画素に2D畳み込みと3D点に連続畳み込みを施した2つのドメイン固有のサブネットワークから構成される。
論文 参考訳(メタデータ) (2020-12-22T22:58:29Z) - Efficient embedding network for 3D brain tumor segmentation [0.33727511459109777]
本稿では,脳腫瘍の3次元的セマンティックセグメンテーションを目的とした2次元分類網の性能伝達手法について検討する。
入力データが3Dの場合、エンコーダの第1層は、効率の良いNetネットワークの入力に適合するために、第3次元の削減に費やされる。
BraTS 2020チャレンジの検証とテストデータに関する実験結果から,提案手法が有望な性能を達成することを示す。
論文 参考訳(メタデータ) (2020-11-22T16:17:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。