論文の概要: Maintaining Common Ground in Dynamic Environments
- arxiv url: http://arxiv.org/abs/2105.14207v1
- Date: Sat, 29 May 2021 04:14:29 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-01 17:50:15.369531
- Title: Maintaining Common Ground in Dynamic Environments
- Title(参考訳): 動的環境における共通地盤の維持
- Authors: Takuma Udagawa and Akiko Aizawa
- Abstract要約: 共通基盤は相互理解の作成と維持のプロセスである。
本研究では,動的文脈における共通基盤の創出と維持の両立を両立させる新しいタスク・セッティングを提案する。
- 参考スコア(独自算出の注目度): 30.6243732488358
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Common grounding is the process of creating and maintaining mutual
understandings, which is a critical aspect of sophisticated human
communication. While various task settings have been proposed in existing
literature, they mostly focus on creating common ground under static context
and ignore the aspect of maintaining them overtime under dynamic context. In
this work, we propose a novel task setting to study the ability of both
creating and maintaining common ground in dynamic environments. Based on our
minimal task formulation, we collected a large-scale dataset of 5,617 dialogues
to enable fine-grained evaluation and analysis of various dialogue systems.
Through our dataset analyses, we highlight novel challenges introduced in our
setting, such as the usage of complex spatio-temporal expressions to create and
maintain common ground. Finally, we conduct extensive experiments to assess the
capabilities of our baseline dialogue system and discuss future prospects of
our research.
- Abstract(参考訳): 共通基盤は相互理解の作成と維持のプロセスであり、これは高度な人間のコミュニケーションの重要な側面である。
既存の文献では様々なタスク設定が提案されているが、それらは主に静的コンテキストで共通の基盤を作成し、動的コンテキストでオーバータイムを維持する側面を無視することに焦点を当てている。
本研究では,動的環境における共通地盤の創出と維持の両立を両立させる新しいタスク・セッティングを提案する。
最小のタスク定式化に基づいて5,617の対話の大規模データセットを収集し,様々な対話システムの詳細な評価と分析を可能にした。
データセット分析を通じて、複雑な時空間表現を用いて共通基盤を作成し維持するなど、我々の設定で導入された新しい課題を強調した。
最後に,ベースライン対話システムの能力を評価するための広範な実験を行い,研究の今後の展望について考察する。
関連論文リスト
- Human-Robot Dialogue Annotation for Multi-Modal Common Ground [4.665414514091581]
本稿では,人間とロボットの対話データにアノテートした記号表現の開発について述べる。
遠隔対話では,人間とロボットが不慣れな環境における共同ナビゲーションと探索作業に従事しているが,ロボットは限られた通信制約のため,すぐには高品質な視覚情報を共有できない。
このパラダイム内では、抽象的意味表現の強化である対話-AMRアノテーションを通じて、対話中の1つの発話の命題意味と補間力を取り込む。
論文 参考訳(メタデータ) (2024-11-19T19:33:54Z) - Common Ground Tracking in Multimodal Dialogue [13.763043173931024]
本研究では,共有目標を持つグループの「議論」の下での,現在の共有信念と質問の集合を自動的に識別する手法を提案する。
我々は、音声の書き起こし、韻律的特徴、ジェスチャー、行動、コラボレーションの顔を含む、共有物理空間におけるマルチモーダル相互作用のデータセットを注釈付けする。
我々は、位置する証拠と信念の公理から導かれる正式なクロージャルールのセットにカスケードし、操作を更新します。
論文 参考訳(メタデータ) (2024-03-26T00:25:01Z) - Fine-Grained Analysis of Team Collaborative Dialogue [1.363890704621148]
Slackチャットを用いたソフトウェア開発領域における説明可能な分析ツールの開発に向けた最初の取り組みについて説明する。
本研究では,対話行動の発生頻度に基づく記述的メトリクスの設計と,長距離コンテキストを組み込むための変換器+CRFアーキテクチャを用いた初期結果を作成する。
論文 参考訳(メタデータ) (2023-12-09T05:38:32Z) - Dialogue Agents 101: A Beginner's Guide to Critical Ingredients for Designing Effective Conversational Systems [29.394466123216258]
本研究は,対話エージェントの主要な特徴,対応するオープンドメインデータセット,およびこれらのデータセットをベンチマークする手法について概説する。
我々は,既存のデータセットの会話から構築された統一dIalogue dataseTであるUNITを提案する。
論文 参考訳(メタデータ) (2023-07-14T10:05:47Z) - DiPlomat: A Dialogue Dataset for Situated Pragmatic Reasoning [89.92601337474954]
プラグマティック推論は、実生活における会話でしばしば起こる暗黙の意味を解読する上で重要な役割を担っている。
そこで我々は,現実的な推論と会話理解の場所に関するマシンの能力のベンチマークを目的とした,新しい挑戦であるDiPlomatを紹介した。
論文 参考訳(メタデータ) (2023-06-15T10:41:23Z) - Interactive Natural Language Processing [67.87925315773924]
対話型自然言語処理(iNLP)は,NLP分野における新しいパラダイムとして登場した。
本稿では,iNLPの概念の統一的定義と枠組みを提案することから,iNLPに関する包括的調査を行う。
論文 参考訳(メタデータ) (2023-05-22T17:18:29Z) - PK-ICR: Persona-Knowledge Interactive Context Retrieval for Grounded Dialogue [21.266410719325208]
ペルソナとナレッジ デュアルコンテキスト識別(ペルソナとナレッジ コンテクストの同定)は、与えられた対話において、ペルソナとナレッジを共同で識別するタスクである。
我々は,対話のすべての文脈を同時に活用する新しい接地検索手法を開発した。
論文 参考訳(メタデータ) (2023-02-13T20:27:26Z) - KETOD: Knowledge-Enriched Task-Oriented Dialogue [77.59814785157877]
対話システム研究における既存の研究は、主にタスク指向の対話とチャットを独立したドメインとして扱う。
本研究では,タスク指向対話と知識ベースチップチャットを一つのモデルに効果的に統合する方法について検討する。
論文 参考訳(メタデータ) (2022-05-11T16:01:03Z) - HybriDialogue: An Information-Seeking Dialogue Dataset Grounded on
Tabular and Textual Data [87.67278915655712]
我々は、ウィキペディアのテキストとテーブルの両方を基盤とした、クラウドソーシングされた自然な会話からなる新しい対話データセットHybriDialogueを提示する。
これらの会話は、複雑なマルチホップ質問をシンプルで現実的なマルチターン対話に分解することで生成される。
論文 参考訳(メタデータ) (2022-04-28T00:52:16Z) - Positioning yourself in the maze of Neural Text Generation: A
Task-Agnostic Survey [54.34370423151014]
本稿では, ストーリーテリング, 要約, 翻訳など, 世代ごとのタスクインパクトをリレーする手法の構成要素について検討する。
本稿では,学習パラダイム,事前学習,モデリングアプローチ,復号化,各分野における重要な課題について,命令的手法の抽象化を提案する。
論文 参考訳(メタデータ) (2020-10-14T17:54:42Z) - Recent Advances and Challenges in Task-oriented Dialog System [63.82055978899631]
課題指向対話システムは、学術・産業社会でますます注目を集めている。
タスク指向ダイアログシステムにおける3つの重要なトピックについて論じる。(1)低リソース環境でのダイアログモデリングを容易にするデータ効率の改善、(2)ダイアログポリシー学習のためのマルチターンダイナミクスのモデリング、(3)ダイアログモデルへのドメイン知識の統合。
論文 参考訳(メタデータ) (2020-03-17T01:34:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。