Demoting the Lead Bias in News Summarization via Alternating Adversarial
Learning
- URL: http://arxiv.org/abs/2105.14241v1
- Date: Sat, 29 May 2021 07:40:59 GMT
- Title: Demoting the Lead Bias in News Summarization via Alternating Adversarial
Learning
- Authors: Linzi Xing, Wen Xiao, Giuseppe Carenini
- Abstract summary: In news articles the lead bias is a common phenomenon that usually dominates the learning signals for neural extractive summarizers.
We introduce a novel technique to demote lead bias and make the summarizer focus more on the content semantics.
- Score: 7.678864239473703
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In news articles the lead bias is a common phenomenon that usually dominates
the learning signals for neural extractive summarizers, severely limiting their
performance on data with different or even no bias. In this paper, we introduce
a novel technique to demote lead bias and make the summarizer focus more on the
content semantics. Experiments on two news corpora with different degrees of
lead bias show that our method can effectively demote the model's learned lead
bias and improve its generality on out-of-distribution data, with little to no
performance loss on in-distribution data.
Related papers
- Model Debiasing by Learnable Data Augmentation [19.625915578646758]
This paper proposes a novel 2-stage learning pipeline featuring a data augmentation strategy able to regularize the training.
Experiments on synthetic and realistic biased datasets show state-of-the-art classification accuracy, outperforming competing methods.
arXiv Detail & Related papers (2024-08-09T09:19:59Z) - Improving Bias Mitigation through Bias Experts in Natural Language
Understanding [10.363406065066538]
We propose a new debiasing framework that introduces binary classifiers between the auxiliary model and the main model.
Our proposed strategy improves the bias identification ability of the auxiliary model.
arXiv Detail & Related papers (2023-12-06T16:15:00Z) - Debiasing Multimodal Models via Causal Information Minimization [65.23982806840182]
We study bias arising from confounders in a causal graph for multimodal data.
Robust predictive features contain diverse information that helps a model generalize to out-of-distribution data.
We use these features as confounder representations and use them via methods motivated by causal theory to remove bias from models.
arXiv Detail & Related papers (2023-11-28T16:46:14Z) - Feature-Level Debiased Natural Language Understanding [86.8751772146264]
Existing natural language understanding (NLU) models often rely on dataset biases to achieve high performance on specific datasets.
We propose debiasing contrastive learning (DCT) to mitigate biased latent features and neglect the dynamic nature of bias.
DCT outperforms state-of-the-art baselines on out-of-distribution datasets while maintaining in-distribution performance.
arXiv Detail & Related papers (2022-12-11T06:16:14Z) - Unsupervised Learning of Unbiased Visual Representations [10.871587311621974]
Deep neural networks are known for their inability to learn robust representations when biases exist in the dataset.
We propose a fully unsupervised debiasing framework, consisting of three steps.
We employ state-of-the-art supervised debiasing techniques to obtain an unbiased model.
arXiv Detail & Related papers (2022-04-26T10:51:50Z) - Learning Debiased Models with Dynamic Gradient Alignment and
Bias-conflicting Sample Mining [39.00256193731365]
Deep neural networks notoriously suffer from dataset biases which are detrimental to model robustness, generalization and fairness.
We propose a two-stage debiasing scheme to combat against the intractable unknown biases.
arXiv Detail & Related papers (2021-11-25T14:50:10Z) - Improving Robustness by Augmenting Training Sentences with
Predicate-Argument Structures [62.562760228942054]
Existing approaches to improve robustness against dataset biases mostly focus on changing the training objective.
We propose to augment the input sentences in the training data with their corresponding predicate-argument structures.
We show that without targeting a specific bias, our sentence augmentation improves the robustness of transformer models against multiple biases.
arXiv Detail & Related papers (2020-10-23T16:22:05Z) - Detecting Media Bias in News Articles using Gaussian Bias Distributions [35.19976910093135]
We study how second-order information about biased statements in an article helps to improve detection effectiveness.
On an existing media bias dataset, we find that the frequency and positions of biased statements strongly impact article-level bias.
Using a standard model for sentence-level bias detection, we provide empirical evidence that article-level bias detectors that use second-order information clearly outperform those without.
arXiv Detail & Related papers (2020-10-20T22:20:49Z) - Learning from Failure: Training Debiased Classifier from Biased
Classifier [76.52804102765931]
We show that neural networks learn to rely on spurious correlation only when it is "easier" to learn than the desired knowledge.
We propose a failure-based debiasing scheme by training a pair of neural networks simultaneously.
Our method significantly improves the training of the network against various types of biases in both synthetic and real-world datasets.
arXiv Detail & Related papers (2020-07-06T07:20:29Z) - Mitigating Gender Bias Amplification in Distribution by Posterior
Regularization [75.3529537096899]
We investigate the gender bias amplification issue from the distribution perspective.
We propose a bias mitigation approach based on posterior regularization.
Our study sheds the light on understanding the bias amplification.
arXiv Detail & Related papers (2020-05-13T11:07:10Z) - Mind the Trade-off: Debiasing NLU Models without Degrading the
In-distribution Performance [70.31427277842239]
We introduce a novel debiasing method called confidence regularization.
It discourages models from exploiting biases while enabling them to receive enough incentive to learn from all the training examples.
We evaluate our method on three NLU tasks and show that, in contrast to its predecessors, it improves the performance on out-of-distribution datasets.
arXiv Detail & Related papers (2020-05-01T11:22:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.